Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Dynamic Pricing Policy for Electric Vehicles: Reinforcement learning approach (2401.00661v1)

Published 1 Jan 2024 in eess.SY, cs.GT, and cs.SY

Abstract: With the increasing number of fast-electric vehicle charging stations (fast-EVCSs) and the popularization of information technology, electricity price competition between fast-EVCSs is highly expected, in which the utilization of public and/or privacy-preserved information will play a crucial role. Self-interest electric vehicle (EV) users, on the other hand, try to select a fast-EVCS for charging in a way to maximize their utilities based on electricity price, estimated waiting time, and their state of charge. While existing studies have largely focused on finding equilibrium prices, this study proposes a personalized dynamic pricing policy (PeDP) for a fast-EVCS to maximize revenue using a reinforcement learning (RL) approach. We first propose a multiple fast-EVCSs competing simulation environment to model the selfish behavior of EV users using a game-based charging station selection model with a monetary utility function. In the environment, we propose a Q-learning-based PeDP to maximize fast-EVCS' revenue. Through numerical simulations based on the environment: (1) we identify the importance of waiting time in the EV charging market by comparing the classic Bertrand competition model with the proposed PeDP for fast-EVCSs (from the system perspective); (2) we evaluate the performance of the proposed PeDP and analyze the effects of the information on the policy (from the service provider perspective); and (3) it can be seen that privacy-preserved information sharing can be misused by artificial intelligence-based PeDP in a certain situation in the EV charging market (from the customer perspective).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. doi:10.1016/j.trb.2016.05.018. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261516303319
  2. doi:10.1016/j.trb.2017.10.011. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261517305052
  3. doi:10.1016/j.trb.2017.04.016. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261516304349
  4. doi:10.1016/j.trb.2018.11.001. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261517311402
  5. doi:10.1016/j.trb.2020.03.001. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261519306976
  6. doi:10.1109/TSG.2015.2504502. URL http://ieeexplore.ieee.org/document/7352372/
  7. doi:10.1016/j.apenergy.2018.05.042. URL https://doi.org/10.1016/j.apenergy.2018.05.042https://linkinghub.elsevier.com/retrieve/pii/S0306261918307359
  8. doi:10.1109/TSTE.2018.2810274.
  9. doi:10.1016/j.apenergy.2016.06.025. URL http://dx.doi.org/10.1016/j.apenergy.2016.06.025
  10. doi:10.1109/TSG.2014.2362994. URL http://ieeexplore.ieee.org/document/6940323/
  11. doi:10.1109/ISGT.2012.6175601. URL http://ieeexplore.ieee.org/document/6175601/
  12. doi:10.1109/ISGT.2012.6175791. URL http://ieeexplore.ieee.org/document/6175791/
  13. doi:10.1109/TSG.2014.2374592. URL http://ieeexplore.ieee.org/document/6987327/
  14. doi:10.1109/TTE.2019.2897087. URL https://ieeexplore.ieee.org/document/8632961/
  15. doi:https://doi.org/10.1016/j.trc.2017.04.008. URL https://www.sciencedirect.com/science/article/pii/S0968090X17301134
  16. doi:10.1016/j.trb.2017.05.002. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261516305343
  17. doi:https://doi.org/10.1016/j.trc.2021.103186. URL https://www.sciencedirect.com/science/article/pii/S0968090X21002023
  18. doi:10.1016/j.trb.2019.02.003. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261518304776
  19. doi:10.1016/j.trb.2019.07.009. URL https://linkinghub.elsevier.com/retrieve/pii/S019126151831172X
  20. doi:10.1016/j.trf.2018.04.012. URL https://linkinghub.elsevier.com/retrieve/pii/S1369847817305168
  21. doi:10.1016/j.trf.2015.04.014. URL https://linkinghub.elsevier.com/retrieve/pii/S1369847815000777
  22. doi:10.1016/j.tra.2015.04.003. URL https://linkinghub.elsevier.com/retrieve/pii/S0965856415000804
  23. doi:10.1016/j.trb.2013.07.010. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261513001252
  24. doi:10.1109/TITS.2021.3086006.
  25. Tesla Semi (2020). URL https://www.tesla.com/semi?redirect=no
  26. doi:10.1007/978-3-642-35311-6. URL http://link.springer.com/10.1007/978-3-642-35311-6{_}12http://link.springer.com/10.1007/978-3-642-35311-6
  27. doi:10.1007/s00182-017-0596-4. URL http://link.springer.com/10.1007/s00182-017-0596-4
  28. arXiv:1511.07907, doi:10.1109/TSG.2015.2504502.
  29. doi:10.1109/TSG.2016.2546281. URL http://ieeexplore.ieee.org/document/7440866/
  30. doi:10.1109/PES.2011.6039082. URL https://ieeexplore.ieee.org/document/6039082/
  31. doi:10.1109/CDC.2013.6760775. URL http://ieeexplore.ieee.org/document/6760775/
  32. doi:10.1109/ACC.2013.6580628. URL http://ieeexplore.ieee.org/document/6580628/
  33. doi:10.1109/COMST.2016.2518628. URL http://ieeexplore.ieee.org/document/7383228/
  34. doi:https://doi.org/10.1016/j.trb.2020.08.005. URL https://www.sciencedirect.com/science/article/pii/S0191261520303829
  35. doi:https://doi.org/10.1016/j.trb.2021.08.015. URL https://www.sciencedirect.com/science/article/pii/S0191261521001636
  36. doi:10.1038/nature14236. URL http://www.nature.com/articles/nature14236
  37. doi:10.1007/978-1-84800-938-7. URL http://link.springer.com/10.1007/978-1-84800-938-7
Citations (3)

Summary

We haven't generated a summary for this paper yet.