2000 character limit reached
More on $G$-flux and General Hodge Cycles on the Fermat Sextic (2401.00470v2)
Published 31 Dec 2023 in hep-th
Abstract: We study M-Theory solutions with $G$-flux on the Fermat sextic Calabi-Yau fourfold, focussing on the relationship between the number of stabilized complex structure moduli and the tadpole contribution of the flux. We use two alternative approaches to define the fluxes: algebraic cycles and (appropriately quantized) Griffiths residues. In both cases, we collect evidence for the non-existence of solutions which stabilize all moduli and stay within the tadpole bound
- J. Bardzell, E. Gonzalo, M. Rajaguru, D. Smith and T. Wrase, “Type IIB flux compactifications with h1,111{}^{1,1}start_FLOATSUPERSCRIPT 1 , 1 end_FLOATSUPERSCRIPT = 0,” JHEP 06 (2022), 166 doi:10.1007/JHEP06(2022)166 [2203.15818].
- K. Becker, E. Gonzalo, J. Walcher and T. Wrase, “Fluxes, vacua, and tadpoles meet Landau-Ginzburg and Fermat,” JHEP 12 (2022), 083 doi:10.1007/JHEP12(2022)083 [2210.03706].
- K. Becker, N. Brady and A. Sengupta, “On fluxes in the 199{}^{9}start_FLOATSUPERSCRIPT 9 end_FLOATSUPERSCRIPT Landau-Ginzburg model,” JHEP 11 (2023), 152 doi:10.1007/JHEP11(2023)152 [2310.00770].
- K. Becker, M. Becker, C. Vafa and J. Walcher, “Moduli Stabilization in Non-Geometric Backgrounds,” Nucl. Phys. B 770 (2007), 1-46 doi:10.1016/j.nuclphysb.2007.01.034 [hep-th/0611001].
- K. Kanno and T. Watari, “Revisiting arithmetic solutions to the W=0𝑊0W=0italic_W = 0 condition,” Phys. Rev. D 96 (2017) no.10, 106001 1705.05110.
- K. Kanno and T. Watari, “W = 0 Complex Structure Moduli Stabilization on CM-type K3 ×\times× K3 Orbifolds: Arithmetic, Geometry and Particle Physics,” Commun. Math. Phys.398 (2023) no.2, 703-756 2012.01111.