Norm inequalities involving geometric means (2401.00337v1)
Abstract: Let $A_i$ and $B_i$ be positive definite matrices for every $i=1,\cdots,m.$ Let $Z=[Z_{ij}]$ be the block matrix, where $Z_{ij}=B_i{\frac{1}{2}}\left(\displaystyle\sum{k=1}mA_k\right)B_j{\frac{1}{_2}}$ for every $ i,j=~1,\cdots,m$. It is shown that $$\left|\left|\left|\sum_{i=1}m\left(A_i{s}\sharp B_i{s}\right)r\right|\right|\right|\leq\left|\left|\left| Z{\frac{sr}{_2}} \right|\right|\right| \leq \left|\left|\left|\left(\left(\sum_{i=1}mA_i\right)\frac{srp}{4}\left(\sum{i=1}mB_i\right)\frac{srp}{2}\left(\sum{i=1}mA_i\right)\frac{srp}{_4}\right){\frac{1}{_p}}\right|\right|\right|,$$ for all $s\geq2$, for all $p>0$ and $r\geq1$ such that $rp\geq1$ and for all unitarily invariant norms. This result generalizes the results in \cite{ONIR} and gives an affirmative answer to a conjecture in \cite{OACRT} for all $s\geq2$ and for all $p>0$ and $r\geq1$ such that $rp\geq1$ and $t=\frac{1}{2}$. This result also leads directly to Dinh, Ahsani, and Tam's conjecture in \cite{GAI} and proves Audenaert's result in \cite{ANIFP}.