Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Identifiability from Modulo Measurements under DFT Sensing Matrix (2401.00194v2)

Published 30 Dec 2023 in cs.IT, eess.SP, and math.IT

Abstract: Modulo sampling (MS) has been recently introduced to enhance the dynamic range of conventional ADCs by applying a modulo operator before sampling. This paper examines the identifiability of a measurement model where measurements are taken using a discrete Fourier transform (DFT) sensing matrix, followed by a modulo operator (modulo-DFT). Firstly, we derive a necessary and sufficient condition for the unique identification of the modulo-DFT sensing model based on the number of measurements and the indices of zero elements in the original signal. Then, we conduct a deeper analysis of three specific cases: when the number of measurements is a power of $2$, a prime number, and twice a prime number. Additionally, we investigate the identifiability of periodic bandlimited (PBL) signals under MS, which can be considered as the modulo-DFT sensing model with additional symmetric and conjugate constraints on the original signal. We also provide a necessary and sufficient condition based solely on the number of samples in one period for the unique identification of the PBL signal under MS, though with an ambiguity in the direct current (DC) component. Furthermore, we show that when the oversampling factor exceeds $3(1+1/P)$, the PBL signal can be uniquely identified with an ambiguity in the DC component, where $P$ is the number of harmonics, including the fundamental component, in the positive frequency part. Finally, we also present a recovery algorithm that estimates the original signal by solving integer linear equations, and we conduct simulations to validate our conclusions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Seminal Graphics Papers: Pushing the Boundaries, Volume 2, pp. 643–652, 2023.
  2. N. J. Cassidy and H. Jol, “Ground penetrating radar data processing, modelling and analysis,” Ground penetrating radar: theory and applications, pp. 141–176, 2009.
  3. Y. Li, M. Safari, R. Henderson, and H. Haas, “Optical OFDM with single-photon avalanche diode,” IEEE Photon. Technol. Lett., vol. 27, no. 9, pp. 943–946, 2015.
  4. A. Adler, V. Emiya, M. G. Jafari, M. Elad, R. Gribonval, and M. D. Plumbley, “Audio inpainting,” IEEE Trans. Audio, Speech, Language Process., vol. 20, no. 3, pp. 922–932, 2011.
  5. D. Park, J. Rhee, and Y. Joo, “A wide dynamic-range CMOS image sensor using self-reset technique,” IEEE Electron Device Lett., vol. 28, no. 10, pp. 890–892, 2007.
  6. K. Sasagawa, T. Yamaguchi, M. Haruta, Y. Sunaga, H. Takehara, H. Takehara, T. Noda, T. Tokuda, and J. Ohta, “An implantable CMOS image sensor with self-reset pixels for functional brain imaging,” IEEE Trans. Electron Devices, vol. 63, no. 1, pp. 215–222, 2015.
  7. A. Krishna, S. Rudresh, V. Shaw, H. R. Sabbella, C. S. Seelamantula, and C. S. Thakur, “Unlimited dynamic range analog-to-digital conversion,” arXiv preprint:1911.09371, 2019.
  8. A. Bhandari and F. Krahmer, “On identifiability in unlimited sampling,” in Proc. Int. Conf. Sampling Theory Appl., pp. 1–4, 2019.
  9. E. Romanov and O. Ordentlich, “Above the Nyquist rate, modulo folding does not hurt,” IEEE Signal Process. Lett., vol. 26, no. 8, pp. 1167–1171, 2019.
  10. S. Mulleti and Y. C. Eldar, “Modulo sampling of FRI signals,” arXiv preprint arXiv:2207.08774, 2022.
  11. D. Prasanna, C. Sriram, and C. R. Murthy, “On the identifiability of sparse vectors from modulo compressed sensing measurements,” IEEE Signal Process. Lett., vol. 28, pp. 131–134, 2020.
  12. L. Fukshansky, D. Needell, and B. Sudakov, “An algebraic perspective on integer sparse recovery,” Appl. Math. Comput., vol. 340, pp. 31–42, 2019.
  13. Y. Cheng, J. Karlsson, and J. Li, “CRB analysis for Mod-ADC with known folding-count,” in Proc. IEEE Veh. Technol. Conf., pp. 1–5, 2023.
  14. A. Bhandari, F. Krahmer, and R. Raskar, “On unlimited sampling,” in Proc. Int. Conf. Sampling Theory Appl., pp. 31–35, 2017.
  15. A. Bhandari, F. Krahmer, and R. Raskar, “On unlimited sampling and reconstruction,” IEEE Trans. Signal Process., vol. 69, pp. 3827–3839, 2020.
  16. M. Beckmann, F. Krahmer, and A. Bhandari, “HDR tomography via modulo Radon transform,” in Proc. IEEE Int. Conf. Image Process., pp. 3025–3029, 2020.
  17. V. Bouis, F. Krahmer, and A. Bhandari, “Multidimensional unlimited sampling: A geometrical perspective,” in Proc. Eur. Signal Process. Conf., pp. 2314–2318, 2021.
  18. S. Fernández-Menduiña, F. Krahmer, G. Leus, and A. Bhandari, “Computational array signal processing via modulo non-linearities,” IEEE Trans. Signal Process., vol. 70, pp. 2168–2179, 2022.
  19. T. Feuillen, M. Alaee-Kerahroodi, A. Bhandari, B. Ottersten, et al., “Unlimited sampling for FMCW radars: A proof of concept,” in Proc. IEEE Radar Conf., pp. 1–5, 2022.
  20. Z. Liu, A. Bhandari, and B. Clerckx, “λ𝜆\lambdaitalic_λ–MIMO: Massive MIMO via modulo sampling,” IEEE Trans. Commun., vol. 71, pp. 6301–6315, 2023.
  21. O. Ordentlich and U. Erez, “Integer-forcing source coding,” IEEE Trans. Inf. Theory, vol. 63, no. 2, pp. 1253–1269, 2016.
  22. O. Ordentlich, G. Tabak, P. K. Hanumolu, A. C. Singer, and G. W. Wornell, “A modulo-based architecture for analog-to-digital conversion,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 5, pp. 825–840, 2018.
  23. E. Romanov and O. Ordentlich, “Blind unwrapping of modulo reduced Gaussian vectors: Recovering MSBs from LSBs,” IEEE Trans. Inf. Theory, vol. 67, no. 3, pp. 1897–1919, 2021.
  24. A. Weiss, E. Huang, O. Ordentlich, and G. W. Wornell, “Blind modulo analog-to-digital conversion,” IEEE Trans. Signal Process., vol. 70, pp. 4586–4601, 2022.
  25. A. Weiss, E. Huang, O. Ordentlich, and G. W. Wornell, “Blind modulo analog-to-digital conversion of vector processes,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., pp. 5617–5621, 2022.
  26. A. Bhandari, F. Krahmer, and T. Poskitt, “Unlimited sampling from theory to practice: Fourier-Prony recovery and prototype ADC,” IEEE Trans. Signal Process., vol. 70, pp. 1131–1141, 2021.
  27. E. Azar, S. Mulleti, and Y. C. Eldar, “Residual recovery algorithm for modulo sampling,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., pp. 5722–5726, 2022.
  28. E. Azar, S. Mulleti, and Y. C. Eldar, “Robust unlimited sampling beyond modulo,” arXiv preprint:2206.14656, 2022.
  29. S. B. Shah, S. Mulleti, and Y. C. Eldar, “Lasso-based fast residual recovery for modulo sampling,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., pp. 1–5, 2023.
  30. D. Florescu, F. Krahmer, and A. Bhandari, “The surprising benefits of hysteresis in unlimited sampling: Theory, algorithms and experiments,” IEEE Trans. Signal Process., vol. 70, pp. 616–630, 2022.
  31. D. Florescu and A. Bhandari, “Unlimited sampling with local averages,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., pp. 5742–5746, 2022.
  32. D. Florescu and A. Bhandari, “Unlimited sampling via generalized thresholding,” in Proc. IEEE Int. Symp. Inf. Theory, pp. 1606–1611, 2022.
  33. G. Shtendel, D. Florescu, and A. Bhandari, “Unlimited sampling of bandpass signals: Computational demodulation via undersampling,” IEEE Trans. Signal Process., vol. 71, pp. 4134–4145, 2023.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com