Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Realizing Open and Decentralized Marketplace for Exchanging Data of Expected IoT Behaviors (2401.00141v1)

Published 30 Dec 2023 in cs.CR and cs.DB

Abstract: With rising concerns about the security of IoT devices, network operators need better ways to handle potential risks. Luckily, IoT devices show consistent patterns in how they communicate. But despite previous efforts, it remains unclear how knowledge of these patterns can be made available. As data marketplaces become popular in different domains, this paper1 proposes creating a special marketplace focused on IoT cybersecurity. The goal is to openly share knowledge about IoT devices' behavior, using structured data formats like Manufacturer Usage Description (MUD) files. To make this work, we employ technologies like blockchain and smart contracts to build a practical and secure foundation for sharing and accessing important information about how IoT devices should behave on the network. Our contributions are two-fold. (1) We identify the essential features of an effective marketplace for sharing data related to the expected behaviors of IoT devices. We develop a smart contract on the Ethereum blockchain with five concrete functions; and, (2) We implement a prototype of our marketplace in a private chain environment-our codes are publicly released. We demonstrate how effectively our marketplace functions through experiments involving MUD files from consumer IoT devices. Our marketplace enables suppliers and consumers to share MUD data on the Ethereum blockchain for under a hundred dollars, promoting accessibility and participation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. S. Guo, M. Lyu, and H. Habibi Gharakheili, “Realizing open and decentralized marketplace for exchanging data of expected iot behaviors,” in Proc. IEEE/IFIP NOMS, Seoul, South Korea, May 2024.
  2. S. Greengard, “Deep Insecurities: The Internet of Things Shifts Technology Risk,” Commun. ACM, vol. 62, no. 5, p. 20–22, Apr 2019.
  3. E. Schiller et al., “Landscape of iot security,” Computer Science Review, vol. 44, p. 100467, 2022.
  4. A. Sivanathan et al., “Classifying IoT Devices in Smart Environments Using Network Traffic Characteristics,” IEEE Transactions on Mobile Computing, vol. 18, 2019.
  5. E. Lear et al., “Manufacturer Usage Description Specification,” RFC 8520, Mar 2019, doi: 10.17487/RFC2617.
  6. A. Hamza et al., “Combining MUD Policies with SDN for IoT Intrusion Detection,” in Proc. ACM IoT S&P, Budapest, Hungary, Aug 2018.
  7. ——, “Verifying and Monitoring IoTs Network Behavior Using MUD Profiles,” IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 1, pp. 1–18, 2022.
  8. ——, “Detecting Volumetric Attacks on LoT Devices via SDN-Based Monitoring of MUD Activity,” in Proc. ACM SOSR, San Jose, CA, USA, 2019.
  9. A. Pashamokhtari et al., “PicP-MUD: Profiling Information Content of Payloads in MUD Flows for IoT Devices,” in Proc. IEEE WoWMoM, Belfast, UK, Jun 2022.
  10. M. Richardson et al., “Loading Manufacturer Usage Description (MUD) URLs from QR Codes,” RFC 9238, May 2022. [Online]. Available: https://www.rfc-editor.org/info/rfc9238
  11. P. Watrobski et al., “Methodology for Characterizing Network Behavior of Internet of Things Devices,” NISTIR 8349, Jan. 2022. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8349-draft.pdf
  12. S. Guo, M. Lyu, and H. Habibi Gharakheili, “shareMUD,” 2023. [Online]. Available: https://github.com/Song-Guo/shareMUD
  13. G. Ramachandran et al., “Towards a decentralized data marketplace for smart cities,” in Proc. IEEE International Smart Cities Conference, Kansas City, MO, USA, Sep 2018.
  14. P. V. Klaine et al., “A privacy-preserving blockchain platform for a data marketplace,” Distrib. Ledger Technol., vol. 2, no. 1, Mar 2023.
  15. H. Subramanian, “A decentralized marketplace for patient-generated health data: Design science approach,” Journal of Medical Internet Research, vol. 25, p. e42743, Feb 2023.
  16. V. Koutsos et al., “Agora: A privacy-aware data marketplace,” IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 06, pp. 3728–3740, Nov 2022.
  17. L. Giaretta et al., “Pds2: A user-centered decentralized marketplace for privacy preserving data processing,” in Proc. IEEE International Conference on Data Engineering Workshops, Chania, Greece, Apr 2021.
  18. F. Yang et al., “Privacy-preserved credit data sharing integrating blockchain and federated learning for industrial 4.0,” IEEE Transactions on Industrial Informatics, vol. 18, no. 12, 2022.
  19. V. Daliparthi et al., “ViSDM: A Liquid Democracy Based Visual Data Marketplace for Sovereign Crowdsourcing Data Collection,” in Proc. European Interdisciplinary Cybersecurity Conference, Stavanger, Norway, Jun 2023.
  20. P. Gupta et al., “Trailchain: Traceability of data ownership across blockchain-enabled multiple marketplaces,” Journal of Network and Computer Applications, vol. 203, p. 103389, Jul 2022.
  21. M. Zhang et al., “Smartauction: A blockchain-based secure implementation of private data queries,” Future Generation Computer Systems, vol. 138, pp. 198–211, 2023.
  22. V. González et al., “On the use of blockchain to enable a highly scalable internet of things data marketplace,” Internet of Things, vol. 22, p. 100722, 2023.
  23. S. A. Azcoitia et al., “Measuring the Price of Data in Commercial Data Marketplaces,” in Proc. International Workshop on Data Economy, Rome, Italy, Dec 2022.
  24. M. Zhang et al., “A survey of data pricing for data marketplaces,” IEEE Transactions on Big Data, vol. 9, no. 4, 2023.
  25. K. Hasan et al., “A Blockchain-Based Secure Data-Sharing Framework for Software Defined Wireless Body Area Networks,” Computer Networks, vol. 211, p. 109004, 2022.
  26. Y. Liu et al., “Government data sharing based on blockchain,” in Proc. ICBCT, Shanghai, China, Mar 2021.
  27. J.-S. Lee et al., “Medical blockchain: Data sharing and privacy preserving of ehr based on smart contract,” Journal of Information Security and Applications, vol. 65, p. 103117, 2022.
  28. R. Kumar et al., “Permissioned blockchain and deep learning for secure and efficient data sharing in industrial healthcare systems,” IEEE Transactions on Industrial Informatics, vol. 18, no. 11, 2022.
  29. J. Zhang et al., “An efficient blockchain-based hierarchical data sharing for healthcare internet of things,” IEEE Transactions on Industrial Informatics, vol. 18, no. 10, 2022.
  30. T. Li et al., “Blockchain-based privacy-preserving and rewarding private data sharing for iot,” IEEE Internet of Things Journal, vol. 9, no. 16, 2022.
  31. Y. Zhang et al., “Blockchain-empowered efficient data sharing in internet of things settings,” IEEE Journal on Selected Areas in Communications, vol. 40, 2022.
  32. S. D. Okegbile et al., “Performance analysis of blockchain-enabled data-sharing scheme in cloud-edge computing-based iot networks,” IEEE Internet of Things Journal, vol. 9, no. 21, 2022.
  33. Z. Zhou et al., “Blockchain-enabled secure and trusted federated data sharing in iiot,” IEEE Transactions on Industrial Informatics, vol. 19, no. 5, 2023.
  34. S. J. et al., “Privacy-preserving and efficient data sharing for blockchain-based intelligent transportation systems,” Information Sciences, vol. 635, pp. 72–85, 2023.
  35. J. Huang et al., “Secure data sharing over vehicular networks based on multi-sharding blockchain,” ACM Trans. Sen. Netw., Jan 2023.
  36. T. Huynh-The et al., “Blockchain for the metaverse: A review,” Future Generation Computer Systems, vol. 143, pp. 401–419, 2023.
  37. L. Morgese Zangrandi et al., “Stepping out of the mud: Contextual threat information for iot devices with manufacturer-provided behavior profiles,” in Proc. ACASC, Austin, TX, USA, Dec 2022.
  38. A. Bremler-Barr et al., “One mud to rule them all: Iot location impact,” in Proc. IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, Apr 2022.
  39. S. A. Harish et al., “Scaling IoT MUD Enforcement using Programmable Data Planes,” in Proc IEEE/IFIP NOMS, Miami, FL, USA, Apr 2023.
  40. Amazon, “AWS Data Exchange,” 2023. [Online]. Available: https://aws.amazon.com/data-exchange/
  41. Google, “Google Cloud Marketplace,” 2023. [Online]. Available: https://cloud.google.com/marketplace
  42. Red Hat, “Red Hat Marketplace,” 2023. [Online]. Available: https://marketplace.redhat.com/en-us
  43. Databricks, “Databricks Marketplace,” 2023. [Online]. Available: https://www.databricks.com/product/marketplace
  44. V. Andalibi et al., “Is visualization enough? evaluating the efficacy of mud-visualizer in enabling ease of deployment for manufacturer usage description (mud),” in Proc. ACSAC, Virtual Event, USA, Dec 2021.
  45. A. Gervais et al., “On the security and performance of proof of work blockchains,” in Proc. ACM CCS, Vienna, Austria, 2016.
  46. J. Jayabalan et al., “Scalable blockchain model using off-chain ipfs storage for healthcare data security and privacy,” J. Parallel Distrib. Comput., vol. 164, no. C, Jun 2022.
  47. S. S. Arslan et al., “Compress-store on blockchain: A decentralized data processing and immutable storage for multimedia streaming,” Cluster Computing, vol. 25, no. 3, jun 2022.
  48. A. Laurent et al., “Transaction fees optimization in the ethereum blockchain,” Blockchain: Research and Applications, vol. 3, no. 3, 2022.
  49. D. Trautwein et al., “Design and evaluation of ipfs: A storage layer for the decentralized web,” in Proc. ACM SIGCOMM, Amsterdam, Netherlands, 2022.
  50. P. Tolmach et al., “A survey of smart contract formal specification and verification,” ACM Comput. Surv., vol. 54, no. 7, jul 2021.
  51. TRUFFLE SUITE, “Ganache: A Tool for Creating a Local Blockchain for Fast Ethereum Development,” 2023. [Online]. Available: https://github.com/trufflesuite/ganache
  52. S. Singh et al., “Implementation of Proof-of-Work using Ganache,” in IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), 2022.
  53. Solidity, “Solidity 0.8.21 documentation,” 2023. [Online]. Available: https://docs.soliditylang.org/en/v0.8.21/
  54. IPFS, “What is IPFS,” 2023. [Online]. Available: https://docs.ipfs.tech/concepts/what-is-ipfs/#defining-ipfs
  55. Ethereum.org, “JSON-RPC API,” 2023. [Online]. Available: https://ethereum.org/en/developers/docs/apis/json-rpc/
  56. NIST Information Technology Laboratory, “Official Common Platform Enumeration (CPE) Dictionary,” Aug 2023. [Online]. Available: https://nvd.nist.gov/products/cpe
  57. A. Hamza et al., “Clear as MUD: Generating, Validating and Applying IoT Behavioral Profiles,” in Proc. Workshop on IoT Security and Privacy, Budapest, Hungary, 2018.
  58. A. A. Zarir, G. A. Oliva, Z. M. J. Jiang, and A. E. Hassan, “Developing cost-effective blockchain-powered applications: A case study of the gas usage of smart contract transactions in the ethereum blockchain platform,” ACM Trans. Softw. Eng. Methodol., vol. 30, no. 3, mar 2021.
  59. M. H. Chinaei et al., “Optimal Witnessing of Healthcare IoT Data Using Blockchain Logging Contract,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 10 117–10 130, Jan 2021.
  60. P. Chen, “Rating System for Online Marketplace,” 2013. [Online]. Available: https://poyichen.medium.com/rating-system-for-online-marketplace-6d07f1704ba
Citations (1)

Summary

We haven't generated a summary for this paper yet.