Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed convergence detection based on global residual error under asynchronous iterations (2312.17558v1)

Published 29 Dec 2023 in cs.DC

Abstract: Convergence of classical parallel iterations is detected by performing a reduction operation at each iteration in order to compute a residual error relative to a potential solution vector. To efficiently run asynchronous iterations, blocking communication requests are avoided, which makes it hard to isolate and handle any global vector. While some termination protocols were proposed for asynchronous iterations, only very few of them are based on global residual computation and guarantee effective convergence. But the most effective and efficient existing solutions feature two reduction operations, which constitutes an important factor of termination delay. In this paper, we present new, non-intrusive, protocols to compute a residual error under asynchronous iterations, requiring only one reduction operation. Various communication models show that some heuristics can even be introduced and formally evaluated. Extensive experiments with up to 5600 processor cores confirm the practical effectiveness and efficiency of our approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. Parallel treatment of a class of differential-algebraic systems. SIAM Journal on Numerical Analysis, 33(5):1969–1980, 1996.
  2. An efficient and robust decentralized algorithm for detecting the global convergence in asynchronous iterative algorithms. In High Performance Computing for Computational Science - VECPAR 2008, volume 5336 of Lecture Notes in Computer Science, pages 240–254. Springer Berlin Heidelberg, 2008.
  3. A decentralized convergence detection algorithm for asynchronous parallel iterative algorithms. IEEE Trans. Parallel Distrib. Syst., 16(1):4–13, 2005.
  4. G. M. Baudet. Asynchronous iterative methods for multiprocessors. J. ACM, 25(2):226–244, 1978.
  5. Parallel algorithms for solving the obstacle problem. Computational Mechanics Publ.,, 2:275–281, 1989.
  6. Some aspects of parallel and distributed iterative algorithms – a survey. Automatica, 27(1):3–21, 1991.
  7. Synchronous and asynchronous implementations of relaxation algorithms for nonlinear network optimization. Parallel Computing, 17(8):873–894, 1991.
  8. K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.
  9. M. Chau. Algorithmes Parallèles Asynchrones pour la Simulation Numérique. PhD thesis, Institut National Polytechnique de Toulouse, Toulouse, France, Nov. 2005.
  10. Parallel solution of the obstacle problem in grid environments. Int. J. High Perform. Comput. Appl., 25(4):488–495, 2011.
  11. Parallel numerical simulation for the coupled problem of continuous flow electrophoresis. International Journal for Numerical Methods in Fluids, 55(10):945–963, 2007.
  12. D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and its Applications, 2(2):199–222, 1969.
  13. Termination detection for diffusing computations. Information Processing Letters, 11(1):1–4, 1980.
  14. J. D. P. Donnelly. Periodic chaotic relaxation. Linear Algebra and its Applications, 4(2):117–128, 1971.
  15. D. El Baz. A method of terminating asynchronous iterative algorithms on message passing systems. Parallel Algorithms and Applications, 9(1-2):153–158, 1996.
  16. D. J. Evans and S. Chikohora. Convergence testing on a distributed network of processors. International Journal of Computer Mathematics, 70(2):357–378, 1998.
  17. N. Francez and M. Rodeh. Achieving distributed termination without freezing. IEEE Trans. Softw. Eng., 8(3):287–292, 1982.
  18. L. Hart and S. McCormick. Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors: Basic ideas. Parallel Computing, 12(2):131–144, 1989.
  19. M. Jarraya. Mise en œuvre et étude de performance d’algorithmes itératifs parallèles sur diverses architectures. Application à l’optimisation, la commande et la résolution de systèmes Markoviens. PhD thesis, Université Paul Sabatier, Toulouse, France, Oct. 2000.
  20. An introduction to snapshot algorithms in distributed computing. Distributed Systems Engineering, 2(4):224–233, 1995.
  21. The asynchronous parallel algorithms s-cor for solving p.d.e.’s on multiprocessors. International Journal of Computer Mathematics, 18(2):163–172, 1985.
  22. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1996.
  23. F. Magoulès and G. Gbikpi-Benissan. JACK: an asynchronous communication kernel library for iterative algorithms. The Journal of Supercomputing, 73(8):3468–3487, 2017.
  24. F. Mattern. Algorithms for distributed termination detection. Distributed Computing, 2(3):161–175, 1987.
  25. A new stopping criterion for linear perturbed asynchronous iterations. Journal of Computational and Applied Mathematics, 219(2):471–483, 2008.
  26. J. C. Miellou. Algorithmes de relaxation chaotique à retards. ESAIM: Mathematical Modeling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 9(R1):55–82, 1975.
  27. S. P. Rana. A distributed solution of the distributed termination problem. Information Processing Letters, 17(1):43–46, 1983.
  28. J. L. Rosenfeld. A case study in programming for parallel-processors. Commun. ACM, 12(12):645–655, 1969.
  29. Finite termination of asynchronous iterative algorithms. Parallel Computing, 22(1):39–56, 1996.
  30. Asynchronous Schwarz alternating method with flexible communication for the obstacle problem. Réseaux et Systèmes Répartis - Calculateurs Parallèles, 13(1):47–66, 2001.
  31. A. Üresin and M. Dubois. Parallel asynchronous algorithms for discrete data. J. ACM, 37(3):588–606, 1990.
Citations (30)

Summary

We haven't generated a summary for this paper yet.