Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An algebraic characterization of binary CSS-T codes and cyclic CSS-T codes for quantum fault tolerance (2312.17518v2)

Published 29 Dec 2023 in cs.IT and math.IT

Abstract: CSS-T codes were recently introduced as quantum error-correcting codes that respect a transversal gate. A CSS-T code depends on a CSS-T pair, which is a pair of binary codes $(C_1, C_2)$ such that $C_1$ contains $C_2$, $C_2$ is even, and the shortening of the dual of $C_1$ with respect to the support of each codeword of $C_2$ is self-dual. In this paper, we give new conditions to guarantee that a pair of binary codes $(C_1, C_2)$ is a CSS-T pair. We define the poset of CSS-T pairs and determine the minimal and maximal elements of the poset. We provide a propagation rule for nondegenerate CSS-T codes. We apply some main results to Reed-Muller, cyclic, and extended cyclic codes. We characterize CSS-T pairs of cyclic codes in terms of the defining cyclotomic cosets. We find cyclic and extended cyclic codes to obtain quantum codes with better parameters than those in the literature.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. Phys. Rev. Lett., 113:080501, Aug 2014.
  2. CSS-T codes from Reed Muller codes for quantum fault tolerance. ArXiv 2305.06423, 2023.
  3. Coding theory package for Macaulay2. Journal of Software for Algebra and Geometry, to appear.
  4. Structure of CSS and CSS-T quantum codes. ArXiv 2310.16504, 2023.
  5. J. Bierbrauer. The theory of cyclic codes and a generalization to additive codes. Des. Codes Cryptogr., 25(2):189–206, 2002.
  6. Quantum error correction via codes over GF⁢(4)GF4{\rm GF}(4)roman_GF ( 4 ). IEEE Trans. Inform. Theory, 44(4):1369–1387, 1998.
  7. Good quantum error-correcting codes exist. Phys. Rev. A, 54:1098–1105, Aug 1996.
  8. I. Cascudo. On squares of cyclic codes. IEEE Trans. Inform. Theory, 65(2):1034–1047, 2019.
  9. Squares of matrix-product codes. Finite Fields Appl., 62:101606, 21, 2020.
  10. Stabilizer quantum codes from J𝐽Jitalic_J-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process., 14(9):3211–3231, 2015.
  11. M. Grassl. Algebraic quantum codes: linking quantum mechanics and discrete mathematics. International Journal of Computer Mathematics: Computer Systems Theory, 6(4):243–259, 2021.
  12. M. Grassl. New quantum codes from CSS codes. Quantum Inf. Process., 22(1):Paper No. 86, 11, 2023.
  13. Macaulay2, a software system for research in algebraic geometry.
  14. S. Nezami and J. Haah. Classification of small triorthogonal codes. Physical Review A, 106(1):012437, 2022.
  15. E. M. Rains. Nonbinary quantum codes. IEEE Trans. Inform. Theory, 45(6):1827–1832, 1999.
  16. Classical coding problem from transversal T gates. In 2020 IEEE International Symposium on Information Theory (ISIT), pages 1891–1896, 2020.
  17. P. W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A, 52(4):R2493–R2496, Oct. 1995.
  18. A. Steane. Multiple-Particle Interference and Quantum Error Correction. Proceedings of the Royal Society of London Series A, 452(1954):2551–2577, Nov. 1996.
  19. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.7), 2023. https://www.sagemath.org.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com