Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recursive Self-Composite Approach Towards Structural Understanding of Boolean Network (2312.17344v1)

Published 28 Dec 2023 in math.DS, cs.SY, eess.SY, and q-bio.MN

Abstract: Boolean networks have been widely used in many areas of science and engineering to represent various dynamical behaviour. In systems biology, they became useful tools to study the dynamical characteristics of large-scale biomolecular networks and there have been a number of studies to develop efficient ways of finding steady states or cycles of Boolean network models. On the other hand, there has been little attention to analyzing the dynamic properties of the network structure itself. Here, we present a systematic way to study such properties by introducing a recursive self-composite of the logic update rules. Of note, we found that all Boolean update rules actually have repeated logic structures underneath. This repeated nature of Boolean networks reveals interesting algebraic properties embedded in the networks. We found that each converged logic leads to the same states, called kernel states. As a result, the longest-length period of states cycle turns out to be equal to the number of converged logics in the logic cycle. Based on this, we propose a leaping and filling algorithm to avoid any possible large string explosions during the self-composition procedures. Finally, we demonstrate how the proposed approach can be used to reveal interesting hidden properties using Boolean network examples of a simple network with a long feedback structure, a T-cell receptor network and a cancer network.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. S. Kauffman, “Homeostasis and differentiation in random genetic control networks,” Nature, vol. 224, no. 5215, pp. 177–178, 1969.
  2. S. Huang, G. Eichler, Y. Bar-Yam, and D. E. Ingber, “Cell fates as high-dimensional attractor states of a complex gene regulatory network,” Physical Review Letters, vol. 94, no. 12, p. 128701, 2005.
  3. Ö. Sahin, H. Fröhlich, C. Löbke, U. Korf, S. Burmester, M. Majety, J. Mattern, I. Schupp, C. Chaouiya, D. Thieffry et al., “Modeling erbb receptor-regulated g1/s transition to find novel targets for de novo trastuzumab resistance,” BMC Systems Biology, vol. 3, no. 1, pp. 1–20, 2009.
  4. S. Collombet, C. Van Oevelen, J. L. Sardina Ortega, W. Abou-Jaoudé, B. Di Stefano, M. Thomas-Chollier, T. Graf, and D. Thieffry, “Logical modeling of lymphoid and myeloid cell specification and transdifferentiation,” Proceedings of the National Academy of Sciences, vol. 114, no. 23, pp. 5792–5799, 2017.
  5. A. Carbo, R. Hontecillas, B. Kronsteiner, M. Viladomiu, M. Pedragosa, P. Lu, C. W. Philipson, S. Hoops, M. Marathe, S. Eubank et al., “Systems modeling of molecular mechanisms controlling cytokine-driven cd4+ t cell differentiation and phenotype plasticity,” PLoS Computational Biology, vol. 9, no. 4, p. e1003027, 2013.
  6. H. F. Fumiã and M. L. Martins, “Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes,” PloS One, vol. 8, no. 7, p. e69008, 2013.
  7. S.-H. Cho, S.-M. Park, H.-S. Lee, H.-Y. Lee, and K.-H. Cho, “Attractor landscape analysis of colorectal tumorigenesis and its reversion,” BMC Systems Biology, vol. 10, pp. 1–13, 2016.
  8. M. Choi, J. Shi, Y. Zhu, R. Yang, and K.-H. Cho, “Network dynamics-based cancer panel stratification for systemic prediction of anticancer drug response,” Nature Communications, vol. 8, no. 1, p. 1940, 2017.
  9. S. R. Choi, C. Y. Hwang, J. Lee, and K.-H. Cho, “Network analysis identifies regulators of basal-like breast cancer reprogramming and endocrine therapy vulnerability,” Cancer Research, vol. 82, no. 2, pp. 320–333, 2022.
  10. N. Kim, C. Y. Hwang, T. Kim, H. Kim, and K.-H. Cho, “A cell-fate reprogramming strategy reverses epithelial-to-mesenchymal transition of lung cancer cells while avoiding hybrid states,” Cancer Research, vol. 83, no. 6, pp. 956–970, 2023.
  11. D. Cheng and H. Qi, “A linear representation of dynamics of boolean networks,” IEEE Transactions on Automatic Control, vol. 55, no. 10, pp. 2251–2258, 2010.
  12. Y. Zhao, J. Kim, and M. Filippone, “Aggregation algorithm towards large-scale boolean network analysis,” IEEE Transactions on Automatic Control, vol. 58, no. 8, pp. 1976–1985, 2013.
  13. T. Akutsu, M. Hayashida, W.-K. Ching, and M. K. Ng, “Control of boolean networks: Hardness results and algorithms for tree structured networks,” Journal of Theoretical Biology, vol. 244, no. 4, pp. 670–679, 2007.
  14. S. Klamt, J. Saez-Rodriguez, J. A. Lindquist, L. Simeoni, and E. D. Gilles, “A methodology for the structural and functional analysis of signaling and regulatory networks,” BMC bioinformatics, vol. 7, pp. 1–26, 2006.
  15. S. Zhu, J. Lu, S.-i. Azuma, and W. X. Zheng, “Strong structural controllability of boolean networks: Polynomial-time criteria, minimal node control, and distributed pinning strategies,” IEEE Transactions on Automatic Control, vol. 68, no. 9, pp. 5461–5476, 2023.
  16. A. Y. Wen, K. M. Sakamoto, and L. S. Miller, “The role of the transcription factor creb in immune function,” The Journal of Immunology, vol. 185, no. 11, pp. 6413–6419, 2010.
  17. L. Duan, A. L. Reddi, A. Ghosh, M. Dimri, and H. Band, “The cbl family and other ubiquitin ligases: destructive forces in control of antigen receptor signaling,” Immunity, vol. 21, no. 1, pp. 7–17, 2004.
  18. H. Chu, D. Lee, and K.-H. Cho, “Precritical state transition dynamics in the attractor landscape of a molecular interaction network underlying colorectal tumorigenesis,” PloS One, vol. 10, no. 10, p. e0140172, 2015.

Summary

We haven't generated a summary for this paper yet.