Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combined Explanation of LHC Multi-Lepton, Di-Photon and Top-Quark Excesses (2312.17314v2)

Published 28 Dec 2023 in hep-ph and hep-ex

Abstract: The LHC analyses of processes containing two or more leptons and missing energy, possibly in association with b-jets, show strong tensions with the Standard Model predictions and are known as multi-lepton anomalies. In particular, top-quark differential distributions point towards the associated production of new Higgs bosons decaying into bottom quarks and W bosons ($>5\sigma$) with masses consistent with the di-photon excesses at 95GeV and 152GeV ($3.8\sigma$ and $4.9\sigma$, respectively). Furthermore, CMS found indications for resonant top-quark pair production at 400GeV ($3.5\sigma$) and both ATLAS and CMS reported elevated four-top and ttW cross-sections. In this article, we propose a combined explanation of these excesses by supplementing the SM Higgs with a second scalar doublet, a real scalar singlet ($S$) and a Higgs triplet with $Y=0$ ($\Delta$); the $\Delta$2HDMS. We fix the masses of the neutral triplet-like and the singlet-like scalars by the di-photon excesses, i.e. $m_{\Delta0}=152$GeV and $m_S=95$GeV, respectively. Here, H, the CP-even component of the second doublet, is produced via gluon fusion from a top-loop and decays dominantly to $S+\Delta0$ whose subsequent decays to WW and bb explain the differential top-quark distributions for $\sigma(pp\to H\to S\Delta0)\approx6$pb. Fixing the top-Yukawa accordingly, the CP-odd Higgs boson A turns out to have the right production cross-section to account for the resonant top-pair excess at 400GeV, while the top-associated production of H and A results in new physics pollution of Standard Model ttW and four-top cross sections, as preferred by the data. Furthermore, a positive shift in the W mass is naturally induced by the vacuum expectation value of the triplet and we show that the most relevant signal strengths of the 152GeV boson are compatible with the process $pp\to H\to \Delta0S$ if S is allowed to decay invisibly.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (134)
  1. Particle Data Group Collaboration, P. A. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.
  2. P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Lett. 12 (1964) 132–133.
  3. F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons,” Phys. Rev. Lett. 13 (1964) 321–323.
  4. P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett. 13 (1964) 508–509.
  5. G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global Conservation Laws and Massless Particles,” Phys. Rev. Lett. 13 (1964) 585–587.
  6. ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012) 1–29, arXiv:1207.7214 [hep-ex].
  7. CMS Collaboration, S. Chatrchyan et al., “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC,” Phys. Lett. B 716 (2012) 30–61, arXiv:1207.7235 [hep-ex].
  8. ATLAS, CMS Collaboration, J. M. Langford, “Combination of Higgs measurements from ATLAS and CMS : couplings and k𝑘kitalic_k- framework,” PoS LHCP2020 (2021) 136.
  9. ATLAS Collaboration, “Combined measurements of Higgs boson production and decay using up to 139139139139 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of proton-proton collision data at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV collected with the ATLAS experiment,” Tech. Rep. ATLAS-CONF-2021-053, 2021.
  10. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL Collaboration, R. Barate et al., “Search for the standard model Higgs boson at LEP,” Phys. Lett. B 565 (2003) 61–75, arXiv:hep-ex/0306033.
  11. CMS Collaboration, A. M. Sirunyan et al., “Search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 8 and 13 TeV,” Phys. Lett. B 793 (2019) 320–347, arXiv:1811.08459 [hep-ex].
  12. CMS Collaboration, “Searches for additional Higgs bosons and vector leptoquarks in τ⁢τ𝜏𝜏\tau\tauitalic_τ italic_τ final states in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV,” Tech. Rep. CMS-PAS-HIG-21-001, 2022.
  13. CMS Collaboration, “Search for a new resonance decaying to two scalars in the final state with two bottom quarks and two photons in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV,” Tech. Rep. CMS-PAS-HIG-21-011, 2022.
  14. ATLAS Collaboration, “Search for diphoton resonances in the 66 to 110 GeV mass range using 140 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of 13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collisions collected with the ATLAS detector,” Tech. Rep. ATLAS-CONF-2023-035, 2023.
  15. A. Crivellin, Y. Fang, O. Fischer, S. Bhattacharya, M. Kumar, E. Malwa, B. Mellado, N. Rapheeha, X. Ruan, and Q. Sha, “Accumulating evidence for the associated production of a new Higgs boson at the LHC,” Phys. Rev. D 108 no. 11, (2023) 115031, arXiv:2109.02650 [hep-ph].
  16. S. Bhattacharya, G. Coloretti, A. Crivellin, S.-E. Dahbi, Y. Fang, M. Kumar, and B. Mellado, “Growing Excesses of New Scalars at the Electroweak Scale,” arXiv:2306.17209 [hep-ph].
  17. ATLAS Collaboration, G. Aad et al., “Search for dark matter in events with missing transverse momentum and a Higgs boson decaying into two photons in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” JHEP 10 (2021) 013, arXiv:2104.13240 [hep-ex].
  18. ATLAS Collaboration, G. Aad et al., “Model-independent search for the presence of new physics in events including H→γ⁢γ→𝐻𝛾𝛾H\to\gamma\gammaitalic_H → italic_γ italic_γ with s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV pp data recorded by the ATLAS detector at the LHC,” JHEP 07 (2023) 176, arXiv:2301.10486 [hep-ex].
  19. S. von Buddenbrock, N. Chakrabarty, A. S. Cornell, D. Kar, M. Kumar, T. Mandal, B. Mellado, B. Mukhopadhyaya, R. G. Reed, and X. Ruan, “Phenomenological signatures of additional scalar bosons at the LHC,” Eur. Phys. J. C 76 no. 10, (2016) 580, arXiv:1606.01674 [hep-ph].
  20. S. von Buddenbrock, A. S. Cornell, A. Fadol, M. Kumar, B. Mellado, and X. Ruan, “Multi-lepton signatures of additional scalar bosons beyond the Standard Model at the LHC,” J. Phys. G 45 no. 11, (2018) 115003, arXiv:1711.07874 [hep-ph].
  21. S. Buddenbrock, A. S. Cornell, Y. Fang, A. Fadol Mohammed, M. Kumar, B. Mellado, and K. G. Tomiwa, “The emergence of multi-lepton anomalies at the LHC and their compatibility with new physics at the EW scale,” JHEP 10 (2019) 157, arXiv:1901.05300 [hep-ph].
  22. S. von Buddenbrock, R. Ruiz, and B. Mellado, “Anatomy of inclusive t⁢t¯⁢W𝑡¯𝑡𝑊t\overline{t}Witalic_t over¯ start_ARG italic_t end_ARG italic_W production at hadron colliders,” Phys. Lett. B 811 (2020) 135964, arXiv:2009.00032 [hep-ph].
  23. Y. Hernandez, M. Kumar, A. S. Cornell, S.-E. Dahbi, Y. Fang, B. Lieberman, B. Mellado, K. Monnakgotla, X. Ruan, and S. Xin, “The anomalous production of multi-lepton and its impact on the measurement of W⁢h𝑊ℎWhitalic_W italic_h production at the LHC,” Eur. Phys. J. C 81 no. 4, (2021) 365, arXiv:1912.00699 [hep-ph].
  24. O. Fischer et al., “Unveiling hidden physics at the LHC,” Eur. Phys. J. C 82 no. 8, (2022) 665, arXiv:2109.06065 [hep-ph].
  25. A. Crivellin and B. Mellado, “Anomalies in Particle Physics,” arXiv:2309.03870 [hep-ph].
  26. CMS Collaboration, A. Tumasyan et al., “Measurements of the Higgs boson production cross section and couplings in the W𝑊Witalic_W boson pair decay channel in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV,” Eur. Phys. J. C 83 no. 7, (2023) 667, arXiv:2206.09466 [hep-ex].
  27. ATLAS Collaboration, G. Aad et al., “Measurements of Higgs boson production by gluon-gluon fusion and vector-boson fusion using H→W⁢W*→e⁢ν⁢μ⁢ν→𝐻𝑊superscript𝑊→𝑒𝜈𝜇𝜈H\to WW^{*}\to e\nu\mu\nuitalic_H → italic_W italic_W start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → italic_e italic_ν italic_μ italic_ν decays in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Phys. Rev. D 108 (2023) 032005, arXiv:2207.00338 [hep-ex].
  28. G. Coloretti, A. Crivellin, S. Bhattacharya, and B. Mellado, “Searching for low-mass resonances decaying into W𝑊Witalic_W bosons,” Phys. Rev. D 108 no. 3, (2023) 035026, arXiv:2302.07276 [hep-ph].
  29. ATLAS Collaboration, G. Aad et al., “Inclusive and differential cross-sections for dilepton t⁢t¯𝑡¯𝑡t\overline{t}italic_t over¯ start_ARG italic_t end_ARG production measured in s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV pp collisions with the ATLAS detector,” JHEP 07 (2023) 141, arXiv:2303.15340 [hep-ex].
  30. S. Banik, G. Coloretti, A. Crivellin, and B. Mellado, “Uncovering New Higgses in the LHC Analyses of Differential t⁢t¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG Cross Sections,” arXiv:2308.07953 [hep-ph].
  31. CMS Collaboration, A. M. Sirunyan et al., “Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 04 (2020) 171, arXiv:1908.01115 [hep-ex]. [Erratum: JHEP 03, 187 (2022)].
  32. X.-G. He, T. Li, X.-Q. Li, J. Tandean, and H.-C. Tsai, “Constraints on Scalar Dark Matter from Direct Experimental Searches,” Phys. Rev. D 79 (2009) 023521, arXiv:0811.0658 [hep-ph].
  33. B. Grzadkowski and P. Osland, “Tempered Two-Higgs-Doublet Model,” Phys. Rev. D 82 (2010) 125026, arXiv:0910.4068 [hep-ph].
  34. H. E. Logan, “Dark matter annihilation through a lepton-specific Higgs boson,” Phys. Rev. D 83 (2011) 035022, arXiv:1010.4214 [hep-ph].
  35. M. S. Boucenna and S. Profumo, “Direct and Indirect Singlet Scalar Dark Matter Detection in the Lepton-Specific two-Higgs-doublet Model,” Phys. Rev. D 84 (2011) 055011, arXiv:1106.3368 [hep-ph].
  36. X.-G. He, B. Ren, and J. Tandean, “Hints of Standard Model Higgs Boson at the LHC and Light Dark Matter Searches,” Phys. Rev. D 85 (2012) 093019, arXiv:1112.6364 [hep-ph].
  37. Y. Bai, V. Barger, L. L. Everett, and G. Shaughnessy, “Two-Higgs-doublet-portal dark-matter model: LHC data and Fermi-LAT 135 GeV line,” Phys. Rev. D 88 (2013) 015008, arXiv:1212.5604 [hep-ph].
  38. X.-G. He and J. Tandean, “Low-Mass Dark-Matter Hint from CDMS II, Higgs Boson at the LHC, and Darkon Models,” Phys. Rev. D 88 (2013) 013020, arXiv:1304.6058 [hep-ph].
  39. Y. Cai and T. Li, “Singlet dark matter in a type II two Higgs doublet model,” Phys. Rev. D 88 no. 11, (2013) 115004, arXiv:1308.5346 [hep-ph].
  40. C.-Y. Chen, M. Freid, and M. Sher, “Next-to-minimal two Higgs doublet model,” Phys. Rev. D 89 no. 7, (2014) 075009, arXiv:1312.3949 [hep-ph].
  41. J. Guo and Z. Kang, “Higgs Naturalness and Dark Matter Stability by Scale Invariance,” Nucl. Phys. B 898 (2015) 415–430, arXiv:1401.5609 [hep-ph].
  42. L. Wang and X.-F. Han, “A simplified 2HDM with a scalar dark matter and the galactic center gamma-ray excess,” Phys. Lett. B 739 (2014) 416–420, arXiv:1406.3598 [hep-ph].
  43. A. Drozd, B. Grzadkowski, J. F. Gunion, and Y. Jiang, “Extending two-Higgs-doublet models by a singlet scalar field - the Case for Dark Matter,” JHEP 11 (2014) 105, arXiv:1408.2106 [hep-ph].
  44. R. Campbell, S. Godfrey, H. E. Logan, A. D. Peterson, and A. Poulin, “Implications of the observation of dark matter self-interactions for singlet scalar dark matter,” Phys. Rev. D 92 no. 5, (2015) 055031, arXiv:1505.01793 [hep-ph]. [Erratum: Phys.Rev.D 101, 039905 (2020)].
  45. A. Drozd, B. Grzadkowski, J. F. Gunion, and Y. Jiang, “Isospin-violating dark-matter-nucleon scattering via two-Higgs-doublet-model portals,” JCAP 10 (2016) 040, arXiv:1510.07053 [hep-ph].
  46. A. Arhrib, R. Benbrik, M. El Kacimi, L. Rahili, and S. Semlali, “Extended Higgs sector of 2HDM with real singlet facing LHC data,” Eur. Phys. J. C 80 no. 1, (2020) 13, arXiv:1811.12431 [hep-ph].
  47. I. Engeln, P. Ferreira, M. M. Muhlleitner, R. Santos, and J. Wittbrodt, “The Dark Phases of the N2HDM,” JHEP 08 (2020) 085, arXiv:2004.05382 [hep-ph].
  48. D. Azevedo, P. Gabriel, M. Muhlleitner, K. Sakurai, and R. Santos, “One-loop corrections to the Higgs boson invisible decay in the dark doublet phase of the N2HDM,” JHEP 10 (2021) 044, arXiv:2104.03184 [hep-ph].
  49. T. Biekötter, S. Heinemeyer, and G. Weiglein, “Excesses in the low-mass Higgs-boson search and the W𝑊Witalic_W-boson mass measurement,” Eur. Phys. J. C 83 no. 5, (2023) 450, arXiv:2204.05975 [hep-ph].
  50. D. A. Ross and M. J. G. Veltman, “Neutral Currents in Neutrino Experiments,” Nucl. Phys. B 95 (1975) 135–147.
  51. J. F. Gunion, R. Vega, and J. Wudka, “Higgs triplets in the standard model,” Phys. Rev. D 42 (1990) 1673–1691.
  52. P. H. Chankowski, S. Pokorski, and J. Wagner, “(Non)decoupling of the Higgs triplet effects,” Eur. Phys. J. C 50 (2007) 919–933, arXiv:hep-ph/0605302.
  53. T. Blank and W. Hollik, “Precision observables in S⁢U⁢(2)×U⁢(1)𝑆𝑈2𝑈1SU(2)\times U(1)italic_S italic_U ( 2 ) × italic_U ( 1 ) models with an additional Higgs triplet,” Nucl. Phys. B 514 (1998) 113–134, arXiv:hep-ph/9703392.
  54. J. R. Forshaw, A. Sabio Vera, and B. E. White, “Mass bounds in a model with a triplet Higgs,” JHEP 06 (2003) 059, arXiv:hep-ph/0302256.
  55. M.-C. Chen, S. Dawson, and T. Krupovnickas, “Higgs triplets and limits from precision measurements,” Phys. Rev. D 74 (2006) 035001, arXiv:hep-ph/0604102.
  56. R. S. Chivukula, N. D. Christensen, and E. H. Simmons, “Low-energy effective theory, unitarity, and non-decoupling behavior in a model with heavy Higgs-triplet fields,” Phys. Rev. D 77 (2008) 035001, arXiv:0712.0546 [hep-ph].
  57. P. Bandyopadhyay and A. Costantini, “Obscure Higgs boson at Colliders,” Phys. Rev. D 103 no. 1, (2021) 015025, arXiv:2010.02597 [hep-ph].
  58. P. Ko, Y. Omura, and C. Yu, “A Resolution of the Flavor Problem of Two Higgs Doublet Models with an Extra U⁢(1)H𝑈subscript1𝐻U(1)_{H}italic_U ( 1 ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT Symmetry for Higgs Flavor,” Phys. Lett. B 717 (2012) 202–206, arXiv:1204.4588 [hep-ph].
  59. S. Banik, A. Crivellin, S. Iguro, and T. Kitahara, “Asymmetric di-Higgs signals of the next-to-minimal 2HDM with a U⁢(1)𝑈1U(1)italic_U ( 1 ) symmetry,” Phys. Rev. D 108 no. 7, (2023) 075011, arXiv:2303.11351 [hep-ph].
  60. S. Ashanujjaman, S. Banik, G. Coloretti, A. Crivellin, B. Mellado, and A.-T. Mulaudzi, “S⁢U⁢(2)L𝑆𝑈subscript2𝐿SU(2)_{L}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT triplet scalar as the origin of the 95 GeV excess?,” Phys. Rev. D 108 no. 9, (2023) L091704, arXiv:2306.15722 [hep-ph].
  61. A. Crivellin, M. Kirk, and A. Thapa, “Minimal model for the W𝑊Witalic_W-boson mass, (g−2)μsubscript𝑔2𝜇(g-2)_{\mu}( italic_g - 2 ) start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT, h→μ+⁢μ−→ℎsuperscript𝜇superscript𝜇h\to\mu^{+}\mu^{-}italic_h → italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT and quark-mixing-matrix unitarity,” Phys. Rev. D 108 no. 3, (2023) L031702, arXiv:2305.03081 [hep-ph].
  62. G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, “Theory and phenomenology of two-Higgs-doublet models,” Phys. Rept. 516 (2012) 1–102, arXiv:1106.0034 [hep-ph].
  63. J. de Blas, M. Pierini, L. Reina, and L. Silvestrini, “Impact of the Recent Measurements of the Top-Quark and W𝑊Witalic_W-Boson Masses on Electroweak Precision Fits,” Phys. Rev. Lett. 129 no. 27, (2022) 271801, arXiv:2204.04204 [hep-ph].
  64. P. Athron, M. Bach, D. H. J. Jacob, W. Kotlarski, D. Stöckinger, and A. Voigt, “Precise calculation of the W𝑊Witalic_W boson pole mass beyond the standard model with FlexibleSUSY,” Phys. Rev. D 106 no. 9, (2022) 095023, arXiv:2204.05285 [hep-ph].
  65. E. Bagnaschi, J. Ellis, M. Madigan, K. Mimasu, V. Sanz, and T. You, “SMEFT analysis of mWsubscript𝑚𝑊m_{W}italic_m start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT,” JHEP 08 (2022) 308, arXiv:2204.05260 [hep-ph].
  66. CDF Collaboration, T. Aaltonen et al., “High-precision measurement of the W𝑊Witalic_W boson mass with the CDF II detector,” Science 376 no. 6589, (2022) 170–176.
  67. ATLAS Collaboration, “Improved W𝑊Witalic_W boson Mass Measurement using 7 TeV Proton-Proton Collisions with the ATLAS Detector,” Tech. Rep. ATLAS-CONF-2023-004, 2023.
  68. LHCb Collaboration, R. Aaij et al., “Measurement of the W𝑊Witalic_W boson mass,” JHEP 01 (2022) 036, arXiv:2109.01113 [hep-ex].
  69. ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collaboration, S. Schael et al., “Electroweak Measurements in Electron-Positron Collisions at W𝑊Witalic_W-Boson-Pair Energies at LEP,” Phys. Rept. 532 (2013) 119–244, arXiv:1302.3415 [hep-ex].
  70. M. Chabab, M. C. Peyranère, and L. Rahili, “Probing the Higgs sector of Y=0𝑌0Y=0italic_Y = 0 Higgs Triplet Model at LHC,” Eur. Phys. J. C 78 no. 10, (2018) 873, arXiv:1805.00286 [hep-ph].
  71. P. Fileviez Perez, H. H. Patel, and A. D. Plascencia, “On the W𝑊Witalic_W mass and new Higgs bosons,” Phys. Lett. B 833 (2022) 137371, arXiv:2204.07144 [hep-ph].
  72. Y. Cheng, X.-G. He, F. Huang, J. Sun, and Z.-P. Xing, “Electroweak precision tests for triplet scalars,” Nucl. Phys. B 989 (2023) 116118, arXiv:2208.06760 [hep-ph].
  73. T.-K. Chen, C.-W. Chiang, and K. Yagyu, “Explanation of the W𝑊Witalic_W mass shift at CDF II in the extended Georgi-Machacek model,” Phys. Rev. D 106 no. 5, (2022) 055035, arXiv:2204.12898 [hep-ph].
  74. T. G. Rizzo, “Kinetic mixing, dark Higgs triplets, and mWsubscript𝑚𝑊m_{W}italic_m start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT,” Phys. Rev. D 106 no. 3, (2022) 035024, arXiv:2206.09814 [hep-ph].
  75. W. Chao, M. Jin, H.-J. Li, and Y.-Q. Peng, “Axion-like Dark Matter from the Type-II Seesaw Mechanism,” arXiv:2210.13233 [hep-ph].
  76. J.-W. Wang, X.-J. Bi, P.-F. Yin, and Z.-H. Yu, “Electroweak dark matter model accounting for the CDF W𝑊Witalic_W-mass anomaly,” Phys. Rev. D 106 no. 5, (2022) 055001, arXiv:2205.00783 [hep-ph].
  77. Y. Shimizu and S. Takeshita, “W𝑊Witalic_W boson mass and grand unification via the type-II seesaw-like mechanism,” Nucl. Phys. B 994 (2023) 116290, arXiv:2303.11070 [hep-ph].
  78. G. Lazarides, R. Maji, R. Roshan, and Q. Shafi, “Heavier W𝑊Witalic_W boson, dark matter, and gravitational waves from strings in an S⁢O⁢(10)𝑆𝑂10SO(10)italic_S italic_O ( 10 ) axion model,” Phys. Rev. D 106 no. 5, (2022) 055009, arXiv:2205.04824 [hep-ph].
  79. G. Senjanović and M. Zantedeschi, “S⁢U⁢(5)𝑆𝑈5SU(5)italic_S italic_U ( 5 ) grand unification and W𝑊Witalic_W-boson mass,” Phys. Lett. B 837 (2023) 137653, arXiv:2205.05022 [hep-ph].
  80. T.-K. Chen, C.-W. Chiang, and K. Yagyu, “CP violation in a model with Higgs triplets,” JHEP 06 (2023) 069, arXiv:2303.09294 [hep-ph]. [Erratum: JHEP 07, 169 (2023)].
  81. LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector,” tech. rep., 10, 2016. arXiv:1610.07922 [hep-ph].
  82. E. Braaten and J. P. Leveille, “Higgs Boson Decay and the Running Mass,” Phys. Rev. D 22 (1980) 715.
  83. N. Sakai, “Perturbative QCD Corrections to the Hadronic Decay Width of the Higgs Boson,” Phys. Rev. D 22 (1980) 2220.
  84. T. Inami and T. Kubota, “Renormalization Group Estimate of the Hadronic Decay Width of the Higgs Boson,” Nucl. Phys. B 179 (1981) 171–188.
  85. S. G. Gorishnii, A. L. Kataev, and S. A. Larin, “The Width of Higgs Boson Decay Into Hadrons: Three Loop Corrections of Strong Interactions,” Sov. J. Nucl. Phys. 40 (1984) 329–334.
  86. S. G. Gorishnii, A. L. Kataev, S. A. Larin, and L. R. Surguladze, “The Analytical four loop corrections to the QED Beta function in the MS scheme and to the QED psi function: Total reevaluation,” Phys. Lett. B 256 (1991) 81–86.
  87. S. G. Gorishnii, A. L. Kataev, S. A. Larin, and L. R. Surguladze, “Corrected Three Loop QCD Correction to the Correlator of the Quark Scalar Currents and ΓtotsuperscriptΓtot\Gamma^{\text{tot}}roman_Γ start_POSTSUPERSCRIPT tot end_POSTSUPERSCRIPT(H0→→superscript𝐻0absentH^{0}\toitalic_H start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → Hadrons),” Mod. Phys. Lett. A 5 (1990) 2703–2712.
  88. S. G. Gorishnii, A. L. Kataev, S. A. Larin, and L. R. Surguladze, “Scheme dependence of the next to next-to-leading QCD corrections to ΓtotsuperscriptΓtot\Gamma^{\text{tot}}roman_Γ start_POSTSUPERSCRIPT tot end_POSTSUPERSCRIPT(H0→→superscript𝐻0absentH^{0}\toitalic_H start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → hadrons) and the spurious QCD infrared fixed point,” Phys. Rev. D 43 (1991) 1633–1640.
  89. A. Djouadi, P. Gambino, and B. A. Kniehl, “Two loop electroweak heavy fermion corrections to Higgs boson production and decay,” Nucl. Phys. B 523 (1998) 17–39, arXiv:hep-ph/9712330.
  90. G. Degrassi and F. Maltoni, “Two-loop electroweak corrections to the Higgs-boson decay H→γ⁢γ→𝐻𝛾𝛾H\to\gamma\gammaitalic_H → italic_γ italic_γ,” Nucl. Phys. B 724 (2005) 183–196, arXiv:hep-ph/0504137.
  91. G. Passarino, C. Sturm, and S. Uccirati, “Complete Two-Loop Corrections to H→γ⁢γ→𝐻𝛾𝛾H\to\gamma\gammaitalic_H → italic_γ italic_γ,” Phys. Lett. B 655 (2007) 298–306, arXiv:0707.1401 [hep-ph].
  92. S. Actis, G. Passarino, C. Sturm, and S. Uccirati, “NNLO Computational Techniques: The Cases H→γ⁢γ→𝐻𝛾𝛾H\to\gamma\gammaitalic_H → italic_γ italic_γ and H→g⁢g→𝐻𝑔𝑔H\to ggitalic_H → italic_g italic_g,” Nucl. Phys. B 811 (2009) 182–273, arXiv:0809.3667 [hep-ph].
  93. A. Djouadi, M. Spira, J. J. van der Bij, and P. M. Zerwas, “QCD corrections to gamma gamma decays of Higgs particles in the intermediate mass range,” Phys. Lett. B 257 (1991) 187–190.
  94. K. G. Chetyrkin, “Correlator of the quark scalar currents and ΓtotsuperscriptΓtot\Gamma^{\text{tot}}roman_Γ start_POSTSUPERSCRIPT tot end_POSTSUPERSCRIPT (H→→𝐻absentH\toitalic_H → hadrons) at O(αs3superscriptsubscript𝛼𝑠3\alpha_{s}^{3}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT) in pQCD,” Phys. Lett. B 390 (1997) 309–317, arXiv:hep-ph/9608318.
  95. P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, “Scalar correlator at O(αs4superscriptsubscript𝛼𝑠4\alpha_{s}^{4}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT), Higgs decay into b-quarks and bounds on the light quark masses,” Phys. Rev. Lett. 96 (2006) 012003, arXiv:hep-ph/0511063.
  96. M. Spira, A. Djouadi, and P. M. Zerwas, “QCD corrections to the H⁢Z⁢γ𝐻𝑍𝛾HZ\gammaitalic_H italic_Z italic_γ coupling,” Phys. Lett. B 276 (1992) 350–353.
  97. D. Graudenz, M. Spira, and P. M. Zerwas, “QCD corrections to Higgs boson production at proton proton colliders,” Phys. Rev. Lett. 70 (1993) 1372–1375.
  98. M. Spira, A. Djouadi, D. Graudenz, and P. M. Zerwas, “Higgs boson production at the LHC,” Nucl. Phys. B 453 (1995) 17–82, arXiv:hep-ph/9504378.
  99. C. Anastasiou and K. Melnikov, “Higgs boson production at hadron colliders in NNLO QCD,” Nucl. Phys. B 646 (2002) 220–256, arXiv:hep-ph/0207004.
  100. R. V. Harlander and W. B. Kilgore, “Next-to-next-to-leading order Higgs production at hadron colliders,” Phys. Rev. Lett. 88 (2002) 201801, arXiv:hep-ph/0201206.
  101. R. V. Harlander and W. B. Kilgore, “Soft and virtual corrections to proton proton →H+x→absent𝐻𝑥\to H+x→ italic_H + italic_x at NNLO,” Phys. Rev. D 64 (2001) 013015, arXiv:hep-ph/0102241.
  102. U. Aglietti, R. Bonciani, G. Degrassi, and A. Vicini, “Analytic Results for Virtual QCD Corrections to Higgs Production and Decay,” JHEP 01 (2007) 021, arXiv:hep-ph/0611266.
  103. H.-L. Li, P.-C. Lu, Z.-G. Si, and Y. Wang, “Associated Production of Higgs Boson and t⁢t¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG at LHC,” Chin. Phys. C 40 no. 6, (2016) 063102, arXiv:1508.06416 [hep-ph].
  104. C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo, and Z. Kunszt, “Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop,” JHEP 01 (2007) 082, arXiv:hep-ph/0611236.
  105. R. Harlander and P. Kant, “Higgs production and decay: Analytic results at next-to-leading order QCD,” JHEP 12 (2005) 015, arXiv:hep-ph/0509189.
  106. V. Ravindran, J. Smith, and W. L. van Neerven, “NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions,” Nucl. Phys. B 665 (2003) 325–366, arXiv:hep-ph/0302135.
  107. CMS Collaboration, A. M. Sirunyan et al., “Measurements of t⁢t¯t¯t\mathrm{t\overline{t}}roman_t over¯ start_ARG roman_t end_ARG differential cross sections in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV using events containing two leptons,” JHEP 02 (2019) 149, arXiv:1811.06625 [hep-ex].
  108. S. Dawson, S. Dittmaier, and M. Spira, “Neutral Higgs boson pair production at hadron colliders: QCD corrections,” Phys. Rev. D 58 (1998) 115012, arXiv:hep-ph/9805244.
  109. M. Spira, “Higgs Boson Production and Decay at Hadron Colliders,” Prog. Part. Nucl. Phys. 95 (2017) 98–159, arXiv:1612.07651 [hep-ph].
  110. ATLAS Collaboration, M. Aaboud et al., “Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Phys. Rev. D 99 no. 9, (2019) 092004, arXiv:1902.10077 [hep-ex].
  111. ATLAS Collaboration, G. Aad et al., “Search for t⁢t¯⁢H/A→t⁢t¯⁢t⁢t¯→𝑡¯𝑡𝐻𝐴𝑡¯𝑡𝑡¯𝑡t\overline{t}H/A\to t\overline{t}t\overline{t}italic_t over¯ start_ARG italic_t end_ARG italic_H / italic_A → italic_t over¯ start_ARG italic_t end_ARG italic_t over¯ start_ARG italic_t end_ARG production in the multilepton final state in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” JHEP 07 (2023) 203, arXiv:2211.01136 [hep-ex].
  112. ATLAS Collaboration, G. Aad et al., “Observation of four-top-quark production in the multilepton final state with the ATLAS detector,” Eur. Phys. J. C 83 no. 6, (2023) 496, arXiv:2303.15061 [hep-ex].
  113. CMS Collaboration, A. Hayrapetyan et al., “Observation of four top quark production in proton-proton collisions at s=13TeV,” Phys. Lett. B 847 (2023) 138290, arXiv:2305.13439 [hep-ex].
  114. ATLAS Collaboration, G. Aad et al., “Search for a CP-odd Higgs boson decaying into a heavy CP-even Higgs boson and a Z𝑍Zitalic_Z boson in the ℓ+⁢ℓ−⁢t⁢t¯superscriptℓsuperscriptℓ𝑡¯𝑡\ell^{+}\ell^{-}t\bar{t}roman_ℓ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_t over¯ start_ARG italic_t end_ARG and ν⁢ν¯⁢b⁢b¯𝜈¯𝜈𝑏¯𝑏\nu\bar{\nu}b\bar{b}italic_ν over¯ start_ARG italic_ν end_ARG italic_b over¯ start_ARG italic_b end_ARG final states using 140 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of data collected with the ATLAS detector,” Tech. Rep. CERN-EP-2023-210, 11, 2023. arXiv:2311.04033 [hep-ex].
  115. ATLAS Collaboration, G. Aad et al., “Inclusive and differential cross-section measurements of t⁢t⁢Z𝑡𝑡𝑍ttZitalic_t italic_t italic_Z production in pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13,TeV with the ATLAS detector, including EFT and spin-correlation interpretations,” arXiv:2312.04450 [hep-ex].
  116. CMS Collaboration, A. M. Sirunyan et al., “Search for a charged Higgs boson decaying into top and bottom quarks in events with electrons or muons in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 01 (2020) 096, arXiv:1908.09206 [hep-ex].
  117. ATLAS Collaboration, G. Aad et al., “Search for charged Higgs bosons decaying into a top quark and a bottom quark at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” JHEP 06 (2021) 145, arXiv:2102.10076 [hep-ex].
  118. ATLAS Collaboration, “Measurement of the total and differential cross-sections of t⁢t¯⁢W𝑡¯𝑡𝑊t\bar{t}Witalic_t over¯ start_ARG italic_t end_ARG italic_W production in p⁢p𝑝𝑝ppitalic_p italic_p collisions at 13 TeV with the ATLAS detector,” Tech. Rep. ATLAS-CONF-2023-019, 2023.
  119. CMS Collaboration, A. M. Sirunyan et al., “Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 07 (2021) 027, arXiv:2103.06956 [hep-ex].
  120. ATLAS Collaboration, “Measurement of the properties of Higgs boson production at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG=13 TeV in the H→γ⁢γ→𝐻𝛾𝛾H\to\gamma\gammaitalic_H → italic_γ italic_γ channel using 139 fb −11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of p⁢p𝑝𝑝ppitalic_p italic_p collision data with the ATLAS experiment,” Tech. Rep. ATLAS-CONF-2020-026, 8, 2020.
  121. CMS Collaboration, A. M. Sirunyan et al., “Search for dark matter produced in association with a Higgs boson decaying to γ⁢γ𝛾𝛾\gamma\gammaitalic_γ italic_γ or τ+⁢τ−superscript𝜏superscript𝜏\tau^{+}\tau^{-}italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 09 (2018) 046, arXiv:1806.04771 [hep-ex].
  122. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP 07 (2014) 079, arXiv:1405.0301 [hep-ph].
  123. T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An introduction to PYTHIA 8.2” Comput. Phys. Commun. 191 (2015) 159–177, arXiv:1410.3012 [hep-ph].
  124. DELPHES 3 Collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Selvaggi, “DELPHES 3, A modular framework for fast simulation of a generic collider experiment,” JHEP 02 (2014) 057, arXiv:1307.6346 [hep-ex].
  125. S. Ashanujjaman, S. Banik, G. Coloretti, and A. Crivellin, “Anatomy of the Higgs Triplet Model with Zero Hypercharge.” , in preparation.
  126. T. Biekötter, S. Heinemeyer, and G. Weiglein, “The 95.4 GeV di-photon excess at ATLAS and CMS,” arXiv:2306.03889 [hep-ph].
  127. CMS Collaboration, A. Tumasyan et al., “Searches for additional Higgs bosons and for vector leptoquarks in τ⁢τ𝜏𝜏\tau\tauitalic_τ italic_τ final states in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 07 (2023) 073, arXiv:2208.02717 [hep-ex].
  128. CEPC Study Group Collaboration, M. Dong et al., “CEPC Conceptual Design Report: Volume 2 - Physics & Detector,” arXiv:1811.10545 [hep-ex].
  129. F. An et al., “Precision Higgs physics at the CEPC,” Chin. Phys. C 43 no. 4, (2019) 043002, arXiv:1810.09037 [hep-ex].
  130. CLICdp, CLIC Collaboration, T. K. Charles et al., “The Compact Linear Collider (CLIC) - 2018 Summary Report,” arXiv:1812.06018 [physics.acc-ph].
  131. FCC Collaboration, A. Abada et al., “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. ST 228 no. 2, (2019) 261–623.
  132. FCC Collaboration, A. Abada et al., “FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1,” Eur. Phys. J. C 79 no. 6, (2019) 474.
  133. ILC Collaboration, “The International Linear Collider Technical Design Report - Volume 2: Physics,” arXiv:1306.6352 [hep-ph].
  134. “The International Linear Collider Technical Design Report - Volume 3.I: Accelerator R&D in the Technical Design Phase,” arXiv:1306.6353 [physics.acc-ph].
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com