Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conversational Question Answering with Reformulations over Knowledge Graph (2312.17269v2)

Published 27 Dec 2023 in cs.CL and cs.AI

Abstract: Conversational question answering (convQA) over knowledge graphs (KGs) involves answering multi-turn natural language questions about information contained in a KG. State-of-the-art methods of ConvQA often struggle with inexplicit question-answer pairs. These inputs are easy for human beings to understand given a conversation history, but hard for a machine to interpret, which can degrade ConvQA performance. To address this problem, we propose a reinforcement learning (RL) based model, CornNet, which utilizes question reformulations generated by LLMs to improve ConvQA performance. CornNet adopts a teacher-student architecture where a teacher model learns question representations using human writing reformulations, and a student model to mimic the teacher model's output via reformulations generated by LLMs. The learned question representation is then used by an RL model to locate the correct answer in a KG. Extensive experimental results show that CornNet outperforms state-of-the-art convQA models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Lihui Liu (19 papers)
  2. Blaine Hill (1 paper)
  3. Boxin Du (10 papers)
  4. Fei Wang (574 papers)
  5. Hanghang Tong (137 papers)
Citations (5)