Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$μ$-Net: ConvNext-Based U-Nets for Cosmic Muon Tomography (2312.17265v1)

Published 25 Dec 2023 in cs.CV, eess.IV, and physics.ins-det

Abstract: Muon scattering tomography utilises muons, typically originating from cosmic rays to image the interiors of dense objects. However, due to the low flux of cosmic ray muons at sea-level and the highly complex interactions that muons display when travelling through matter, existing reconstruction algorithms often suffer from low resolution and high noise. In this work, we develop a novel two-stage deep learning algorithm, $\mu$-Net, consisting of an MLP to predict the muon trajectory and a ConvNeXt-based U-Net to convert the scattering points into voxels. $\mu$-Net achieves a state-of-the-art performance of 17.14 PSNR at the dosage of 1024 muons, outperforming traditional reconstruction algorithms such as the point of closest approach algorithm and maximum likelihood and expectation maximisation algorithm. Furthermore, we find that our method is robust to various corruptions such as inaccuracies in the muon momentum or a limited detector resolution. We also generate and publicly release the first large-scale dataset that maps muon detections to voxels. We hope that our research will spark further investigations into the potential of deep learning to revolutionise this field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250–303, July 2003. doi: 10.1016/s0168-9002(03)01368-8. URL https://doi.org/10.1016/s0168-9002(03)01368-8.
  2. Cosmic-ray tomography for border security. Instruments, 7(1), 2023. ISSN 2410-390X. doi: 10.3390/instruments7010013. URL https://www.mdpi.com/2410-390X/7/1/13.
  3. Deep learning on 3d point clouds. Remote Sensing, 12(11):1729, 2020.
  4. Most probable trajectory of a muon in a scattering medium, when input and output trajectories are known. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 693:154–159, November 2012. doi: 10.1016/j.nima.2012.07.008. URL https://doi.org/10.1016/j.nima.2012.07.008.
  5. Review of particle physics. Physical Review D, 86(1), July 2012. doi: 10.1103/physrevd.86.010001. URL https://doi.org/10.1103/physrevd.86.010001.
  6. Three-dimensional muon imaging of cavities inside the temperino mine (italy). Scientific Reports, 12(1), December 2022. doi: 10.1038/s41598-022-26393-7. URL https://doi.org/10.1038/s41598-022-26393-7.
  7. A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography. Journal of Applied Physics, 123(12), mar 2018. doi: 10.1063/1.5024671. URL https://doi.org/10.1063%2F1.5024671.
  8. 3d u-net: learning dense volumetric segmentation from sparse annotation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19, pp.  424–432. Springer, 2016.
  9. 3d muography for the search of hidden cavities. Scientific Reports, 9(1), February 2019. doi: 10.1038/s41598-019-39682-5. URL https://doi.org/10.1038/s41598-019-39682-5.
  10. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.
  11. Point-unet: A context-aware point-based neural network for volumetric segmentation. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24, pp.  644–655. Springer, 2021.
  12. A novel reconstruction algorithm based on density clustering for cosmic-ray muon scattering inspection. Nuclear Engineering and Technology, 53(7):2348–2356, July 2021. doi: 10.1016/j.net.2021.01.014. URL https://doi.org/10.1016/j.net.2021.01.014.
  13. Nuclear waste imaging and spent fuel verification by muon tomography. Annals of Nuclear Energy, 53:267–273, March 2013. doi: 10.1016/j.anucene.2012.09.011. URL https://doi.org/10.1016/j.anucene.2012.09.011.
  14. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision, pp.  10012–10022, 2021.
  15. A convnet for the 2020s. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 11966–11976. IEEE, 2022. doi: 10.1109/CVPR52688.2022.01167. URL https://doi.org/10.1109/CVPR52688.2022.01167.
  16. Precise characterization of a corridor-shaped structure in khufu’s pyramid by observation of cosmic-ray muons. Nature Communications, 14(1), March 2023a. doi: 10.1038/s41467-023-36351-0. URL https://doi.org/10.1038/s41467-023-36351-0.
  17. Precise characterization of a corridor-shaped structure in khufu’s pyramid by observation of cosmic-ray muons. Nature Communications, 14(1), March 2023b. doi: 10.1038/s41467-023-36351-0. URL https://doi.org/10.1038/s41467-023-36351-0.
  18. U-net: Convolutional networks for biomedical image segmentation. In Navab, N., Hornegger, J., III, W. M. W., and Frangi, A. F. (eds.), Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference Munich, Germany, October 5 - 9, 2015, Proceedings, Part III, volume 9351 of Lecture Notes in Computer Science, pp.  234–241. Springer, 2015. doi: 10.1007/978-3-319-24574-4_28. URL https://doi.org/10.1007/978-3-319-24574-4_28.
  19. Cosmic-ray theory. Reviews of Modern Physics, 13(4):240, 1941.
  20. Imaging of underground cavities with cosmic-ray muons from observations at mt. echia (naples). Scientific Reports, 7(1), April 2017. doi: 10.1038/s41598-017-01277-3. URL https://doi.org/10.1038/s41598-017-01277-3.
  21. Applications of muon absorption radiography to the fields of archaeology and civil engineering. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2137):20180057, December 2018. doi: 10.1098/rsta.2018.0057. URL https://doi.org/10.1098/rsta.2018.0057.
  22. A maximum likelihood proton path formalism for application in proton computed tomography. Medical Physics, 35(11):4849–4856, oct 2008. doi: 10.1118/1.2986139. URL https://doi.org/10.1118%2F1.2986139.
  23. Schultz, L. J. Cosmic Ray Muon Radiography. PhD thesis, Portland State University, 2003.
  24. Statistical reconstruction for cosmic ray muon tomography. IEEE transactions on Image Processing, 16(8):1985–1993, 2007.
  25. Energy and angular distributions of atmospheric muons at the earth. International Journal of Modern Physics A, 33(30):1850175, October 2018. doi: 10.1142/s0217751x18501750. URL https://doi.org/10.1142/s0217751x18501750.
  26. Angle statistics reconstruction: a robust reconstruction algorithm for muon scattering tomography. Journal of Instrumentation, 9(11):P11019–P11019, November 2014. doi: 10.1088/1748-0221/9/11/p11019. URL https://doi.org/10.1088/1748-0221/9/11/p11019.
  27. A review of deep learning CT reconstruction: Concepts, limitations, and promise in clinical practice. Current Radiology Reports, 10(9):101–115, July 2022. doi: 10.1007/s40134-022-00399-5. URL https://doi.org/10.1007/s40134-022-00399-5.
  28. A novel technique to detect special nuclear material using cosmic rays. Geoscientific Instrumentation, Methods and Data Systems, 1(2):235–238, December 2012. doi: 10.5194/gi-1-235-2012. URL https://doi.org/10.5194/gi-1-235-2012.
  29. First muography of stromboli volcano. Scientific Reports, 9(1), April 2019. doi: 10.1038/s41598-019-43131-8. URL https://doi.org/10.1038/s41598-019-43131-8.
  30. Hidden chamber discovery in the underground hellenistic necropolis of neapolis by muography. Scientific Reports, 13(1), April 2023. doi: 10.1038/s41598-023-32626-0. URL https://doi.org/10.1038/s41598-023-32626-0.
  31. Attention is all you need. In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.
  32. Bayesian image reconstruction for improving detection performance of muon tomography. IEEE Transactions on Image Processing, 18(5):1080–1089, May 2009. doi: 10.1109/tip.2009.2014423. URL https://doi.org/10.1109/tip.2009.2014423.
  33. Ieee bigdata 2023 cup: Object recognition with muon tomography using cosmic rays, 2023. URL https://knowledgepit.ai/object-recognition-with-muon-tomography/.
  34. Bayesian-theory-based most probable trajectory reconstruction algorithm in cosmic ray muon tomography. In 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp.  1–4, 2014. doi: 10.1109/NSSMIC.2014.7431084.
  35. Deep sets. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.
  36. Principle study of image reconstruction algorithms in muon tomography. Journal of Instrumentation, 15(02):T02005, 2020.

Summary

We haven't generated a summary for this paper yet.