Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Close encounters of the primordial kind: a new observable for primordial black holes as dark matter (2312.17217v3)

Published 28 Dec 2023 in astro-ph.CO, astro-ph.EP, and hep-ph

Abstract: Primordial black holes (PBHs) remain a viable dark matter candidate in the asteroid-mass range. We point out that in this scenario, the PBH abundance would be large enough for at least one object to cross through the inner Solar System per decade. Since Solar System ephemerides are modeled and measured to extremely high precision, such close encounters could produce detectable perturbations to orbital trajectories with characteristic features. We evaluate this possibility with a suite of simple Solar System simulations, and we argue that the abundance of asteroid-mass PBHs can plausibly be probed by existing and near-future data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. J. de Swart, G. Bertone, and J. van Dongen, How Dark Matter Came to Matter, Nature Astron. 1, 0059 (2017), arXiv:1703.00013 [astro-ph.CO] .
  2. P. J. E. Peebles, Cosmology’s Century: An Inside History of Our Modern Understanding of the Universe (Princeton University Press, 2022).
  3. A. Boveia and C. Doglioni, Dark Matter Searches at Colliders, Ann. Rev. Nucl. Part. Sci. 68, 429 (2018), arXiv:1810.12238 [hep-ex] .
  4. A. Weltman et al., Fundamental physics with the Square Kilometre Array, Publ. Astron. Soc. Austral. 37, e002 (2020), arXiv:1810.02680 [astro-ph.CO] .
  5. P. Agrawal et al., Feebly-interacting particles: FIPs 2020 workshop report, Eur. Phys. J. C 81, 1015 (2021), arXiv:2102.12143 [hep-ph] .
  6. J. Cooley et al., Report of the Topical Group on Particle Dark Matter for Snowmass 2021,   (2022), arXiv:2209.07426 [hep-ph] .
  7. R. L. Workman et al. (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022).
  8. I. D. Zel’dovich, Ya.B.; Novikov, The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model, Soviet Astron. AJ (Engl. Transl. ), 10, 602 (1967).
  9. S. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. Roy. Astron. Soc. 152, 75 (1971).
  10. B. J. Carr and S. W. Hawking, Black holes in the early Universe, Mon. Not. Roy. Astron. Soc. 168, 399 (1974).
  11. M. Y. Khlopov, Primordial Black Holes, Res. Astron. Astrophys. 10, 495 (2010), arXiv:0801.0116 [astro-ph] .
  12. B. Carr and F. Kuhnel, Primordial Black Holes as Dark Matter: Recent Developments, Ann. Rev. Nucl. Part. Sci. 70, 355 (2020), arXiv:2006.02838 [astro-ph.CO] .
  13. A. M. Green and B. J. Kavanagh, Primordial Black Holes as a dark matter candidate, J. Phys. G 48, 043001 (2021), arXiv:2007.10722 [astro-ph.CO] .
  14. P. Villanueva-Domingo, O. Mena, and S. Palomares-Ruiz, A brief review on primordial black holes as dark matter, Front. Astron. Space Sci. 8, 87 (2021), arXiv:2103.12087 [astro-ph.CO] .
  15. A. Escrivà, F. Kuhnel, and Y. Tada, Primordial Black Holes,  (2022), arXiv:2211.05767 [astro-ph.CO] .
  16. S. Sugiyama, T. Kurita, and M. Takada, On the wave optics effect on primordial black hole constraints from optical microlensing search, Mon. Not. Roy. Astron. Soc. 493, 3632 (2020), arXiv:1905.06066 [astro-ph.CO] .
  17. K. M. Belotsky and A. A. Kirillov, Primordial black holes with mass 1016−1017superscript1016superscript101710^{16}-10^{17}10 start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT g and reionization of the Universe, JCAP 01, 041, arXiv:1409.8601 [astro-ph.CO] .
  18. M. Boudaud and M. Cirelli, Voyager 1 e±superscript𝑒plus-or-minuse^{\pm}italic_e start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT Further Constrain Primordial Black Holes as Dark Matter, Phys. Rev. Lett. 122, 041104 (2019), arXiv:1807.03075 [astro-ph.HE] .
  19. R. Laha, Primordial Black Holes as a Dark Matter Candidate Are Severely Constrained by the Galactic Center 511 keV γ𝛾\gammaitalic_γ -Ray Line, Phys. Rev. Lett. 123, 251101 (2019), arXiv:1906.09994 [astro-ph.HE] .
  20. W. DeRocco and P. W. Graham, Constraining Primordial Black Hole Abundance with the Galactic 511 keV Line, Phys. Rev. Lett. 123, 251102 (2019), arXiv:1906.07740 [astro-ph.CO] .
  21. R. Laha, J. B. Muñoz, and T. R. Slatyer, INTEGRAL constraints on primordial black holes and particle dark matter, Phys. Rev. D 101, 123514 (2020), arXiv:2004.00627 [astro-ph.CO] .
  22. M. H. Chan and C. M. Lee, Constraining Primordial Black Hole Fraction at the Galactic Centre using radio observational data, Mon. Not. Roy. Astron. Soc. 497, 1212 (2020), arXiv:2007.05677 [astro-ph.HE] .
  23. H. Niikura et al., Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations, Nature Astron. 3, 524 (2019), arXiv:1701.02151 [astro-ph.CO] .
  24. F. Capela, M. Pshirkov, and P. Tinyakov, Constraints on primordial black holes as dark matter candidates from capture by neutron stars, Phys. Rev. D 87, 123524 (2013), arXiv:1301.4984 [astro-ph.CO] .
  25. E. Belbruno and J. Green, When leaving the Solar system: Dark matter makes a difference, Mon. Not. Roy. Astron. Soc. 510, 5154 (2022), arXiv:2201.06575 [astro-ph.GA] .
  26. G. Brown, L. He, and J. Unwin, The potential impact of primordial black holes on exoplanet systems, Preprint (2023).
  27. T. W. Murphy, Lunar laser ranging: the millimeter challenge, Rept. Prog. Phys. 76, 076901 (2013), arXiv:1309.6294 [gr-qc] .
  28. A. S. Konopliv, R. S. Park, and W. M. Folkner, An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data, Icarus 274, 253 (2016).
  29. NASA Jet Propulsion Laboratory, Solar system dynamics (a), accessed: 2023-11-20.
  30. L’Observatoire de Paris, Ephemerides, accessed: 2023-11-20.
  31. A. Fienga and O. Minazzoli, Testing Theories of Gravity with Planetary Ephemerides,   (2023), arXiv:2303.01821 [gr-qc] .
  32. N. Copernicus, De revolutionibus orbium cœlestium (Petreius, Nuremburg, 1543).
  33. M. Vallisneri et al., Modeling the uncertainties of solar system ephemerides for robust gravitational-wave searches with pulsar-timing arrays, The Astrophysical Journal 893, 112 (2020).
  34. N. P. Pitjev and E. V. Pitjeva, Constraints on dark matter in the solar system, Astronomy Letters 39, 141 (2013), arXiv:1306.5534 [astro-ph.EP] .
  35. J. Binney and L. K. Wong, Modelling the Milky Way’s globular cluster system, MNRAS 467, 2446 (2017), arXiv:1701.06995 [astro-ph.GA] .
  36. L. Posti and A. Helmi, Mass and shape of the Milky Way’s dark matter halo with globular clusters from Gaia and Hubble, A&A 621, A56 (2019), arXiv:1805.01408 [astro-ph.GA] .
  37. N. H. Hoang, F. Mogavero, and J. Laskar, Long-term instability of the inner Solar system: numerical experiments, MNRAS 514, 1342 (2022), arXiv:2205.04170 [astro-ph.EP] .
  38. F. Mogavero, N. H. Hoang, and J. Laskar, Timescales of Chaos in the Inner Solar System: Lyapunov Spectrum and Quasi-integrals of Motion, Physical Review X 13, 021018 (2023), arXiv:2305.01683 [astro-ph.EP] .
  39. G. Brown and H. Rein, On the long-term stability of the Solar system in the presence of weak perturbations from stellar flybys, MNRAS 515, 5942 (2022), arXiv:2206.14240 [astro-ph.EP] .
  40. C. D. Murray and S. F. Dermott, Solar System Dynamics (Cambridge University Press, Cambridge, 2000).
  41. H. A. Lorentz and J. Droste, The motion of a system of bodies under the influence of their mutual attraction, according to Einstein’s theory, in Collected Papers: Volume V, edited by H. A. Lorentz (Springer Netherlands, Dordrecht, 1937) pp. 330–355.
  42. A. Einstein, L. Infeld, and B. Hoffman, The gravitational equations and the problem of motion, Annals of Mathematics 39, 65 (1938).
  43. C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, New York, 2018).
  44. H. Rein and S. F. Liu, REBOUND: an open-source multi-purpose N-body code for collisional dynamics, A&A 537, A128 (2012), arXiv:1110.4876 [astro-ph.EP] .
  45. NASA Jet Propulsion Laboratory, Horizons system (b), accessed: 2023-11-20.
  46. H. Rein and D. Tamayo, WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations, MNRAS 452, 376 (2015), arXiv:1506.01084 [astro-ph.EP] .
  47. B. P. Abbott et al. (LIGO Scientific, Virgo), A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals, Class. Quant. Grav. 37, 055002 (2020), arXiv:1908.11170 [gr-qc] .
Citations (11)

Summary

  • The paper introduces a novel observable based on orbital perturbations from PBH flybys to probe dark matter as primordial black holes.
  • It employs analytical models validated by numerical simulations to estimate deviations in Solar System object trajectories.
  • The study calculates event rates in the asteroid-mass range, paving the way for constraining or identifying dark matter candidates.

Overview of "Close Encounters of the Primordial Kind: A New Observable for Primordial Black Holes as Dark Matter"

The paper "Close Encounters of the Primordial Kind: A New Observable for Primordial Black Holes as Dark Matter" by Tran et al. explores the hypothesis that primordial black holes (PBHs) in the asteroid-mass range could constitute all or much of dark matter (DM). Despite significant constraints across various potential mass ranges for PBHs, a window remains unconstrained between approximately 101710^{17} and 102310^{23} grams. This paper proposes a novel method to probe this mass range using the precision tracking of objects within the Solar System.

Key Contributions

  1. Observable Effects of PBH Flybys: The authors highlight that if PBHs with masses in the unconstrained range account for all DM, their abundance should be sufficient for at least one to pass through the inner Solar System per decade. Such events would perturb the orbits of Solar System objects (SSOs), resulting in measurable deviations (or residuals) in their paths.
  2. Simulation and Analytical Models: The authors provide an analytical model for estimating the perturbations caused by a PBH flyby, and validate this model with numerical simulations. They conclude that deviations induced in SSOs’ trajectories, such as the Earth-Mars or Earth-Moon distances, could be detectable with current or near-future observational technologies. The analytical model offers a quick means to estimate expected perturbations, while the simulations account for the complexity of Solar System dynamics, including the multi-body problem.
  3. Rate of Detectable Events: A central focus of the work is on estimating the rate at which such perturbations could be observed. The authors calculate that current precision measurements could potentially detect or place limits on PBH mass in the range of 101810^{18} to 102310^{23} grams through continued monitoring of SSO trajectories.
  4. Challenges and Computational Strategies: Recognizing the computational limitations, the authors restrict their simulations to relevant SSOs and specific perturbation scenarios. However, they stress the importance of improving simulation complexity, such as including relativistic effects and contributions from other smaller bodies like asteroids, to enhance detection accuracy.

Theoretical and Practical Implications

This paper extends existing theoretical frameworks for PBH as dark matter by offering an innovative observational strategy directly linked to high-precision astronomical datasets. The practical implications are twofold: it introduces a method for a quasi-direct detection of a DM candidate, and it paves the way for further exploration of astrophysical phenomena using currently available Solar System data. It also suggests that future development of techniques for detecting small perturbations, akin to those used in projects like LIGO, could further enhance sensitivity to such PBH flybys.

Future Directions

The paper opens several avenues for future research. Improved simulations incorporating all SSOs and additional physical dynamics could refine predictions. Furthermore, continually improving observational data and analytical techniques could converge to establish limits or possibly detection of PBHs in the announced mass range. Enhancing our understanding of the potential roles PBHs play in the universe remains a central quest, with this method adding a valuable tool to the astrophysicist's arsenal.

In conclusion, the paper by Tran et al. introduces a promising approach to detecting PBH DM candidates via their effects on Solar System dynamics, leveraging the precision of existing ephemeris models. If developed further, this strategy might not only constrain the mass range of PBHs but potentially identify them as a constituent of dark matter.

Youtube Logo Streamline Icon: https://streamlinehq.com