Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tunable even- and odd-denominator fractional quantum Hall states in trilayer graphene (2312.17204v1)

Published 28 Dec 2023 in cond-mat.mes-hall

Abstract: The fractional quantum Hall (FQH) states are exotic quantum many-body phases whose elementary charged excitations are neither bosons nor fermions but anyons, obeying fractional braiding statistics. While most FQH states are believed to have Abelian anyons, the Moore-Read type states with even denominators, appearing at half filling of a Landau level (LL), are predicted to possess non-Abelian excitations with appealing potentials in topological quantum computation. These states, however, depend sensitively on the orbital contents of the single-particle LL wavefunction and the mixing between different LLs. Although they have been observed in a few materials, their non-Abelian statistics still awaits experimental confirmation. Here we show magnetotransport measurements on Bernal-stacked trilayer graphene (TLG), whose unique multiband structure facilitates the interlaced LL mixing, which can be controlled by external magnetic and displacement fields. We observe a series of robust FQH states including even-denominator ones at filling factors $\nu=-9/2$, $-3/2$, $3/2$ and $9/2$. In addition, we are able to finetune the LL mixing and crossings to drive quantum phase transitions of these half-filling states and their neighboring odd-denominator ones, exhibiting a related emerging and waning behavior. Our results establish TLG as a controllable system for tuning the weights of LL orbitals and mixing strength, and a fresh platform to seek for non-Abelian quasi-particles.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. K. v. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance, Phys. Rev. Lett. 45, 494 (1980).
  2. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48, 1559 (1982).
  3. J. K. Jain, Composite-fermion approach for the fractional quantum hall effect, Phys. Rev. Lett. 63, 199 (1989a).
  4. B. I. Halperin and J. K. Jain, eds., Fractional Quantum Hall Effects: New Developments (World Scientific Publishing, 2020).
  5. G. Moore and N. Read, Nonabelions in the fractional quantum hall effect, Nucl. Phys. B 360, 362 (1991).
  6. M. Levin, B. I. Halperin, and B. Rosenow, Particle-hole symmetry and the pfaffian state, Phys. Rev. Lett. 99, 236806 (2007).
  7. D. T. Son, Is the composite fermion a dirac particle?, Phys. Rev. X 5, 031027 (2015).
  8. P. T. Zucker and D. E. Feldman, Stabilization of the particle-hole pfaffian order by landau-level mixing and impurities that break particle-hole symmetry, Phys. Rev. Lett. 117, 096802 (2016).
  9. M. Serbyn and D. A. Abanin, New dirac points and multiple landau level crossings in biased trilayer graphene, Phys. Rev. B 87, 115422 (2013).
  10. M. Koshino and E. McCann, Landau level spectra and the quantum hall effect of multilayer graphene, Phys. Rev. B 83, 165443 (2011).
  11. M. Levin and B. I. Halperin, Collective states of non-abelian quasiparticles in a magnetic field, Phys. Rev. B 79, 205301 (2009).
  12. V. M. Apalkov and T. Chakraborty, Stable pfaffian state in bilayer graphene, Phys. Rev. Lett. 107, 186803 (2011).
  13. Z. Papić, R. Thomale, and D. A. Abanin, Tunable electron interactions and fractional quantum hall states in graphene, Phys. Rev. Lett. 107, 176602 (2011).
  14. K. Snizhko, V. Cheianov, and S. H. Simon, Importance of interband transitions for the fractional quantum hall effect in bilayer graphene, Phys. Rev. B 85, 201415 (2012).
  15. Z. Zhu, D. N. Sheng, and I. Sodemann, Widely tunable quantum phase transition from moore-read to composite fermi liquid in bilayer graphene, Phys. Rev. Lett. 124, 097604 (2020).
  16. F. D. M. Haldane, E. H. Rezayi, and K. Yang, Graviton chirality and topological order in the half-filled landau level, Phys. Rev. B 104, L121106 (2021).
  17. B. I. Halperin, Theory of the quantized hall conductance, Helv. Phys. Acta 56, 75 (1983).
  18. J. K. Jain, Incompressible quantum hall states, Phys. Rev. B 40, 8079 (1989b).
  19. M. Kharitonov, Phase diagram for the ν=0𝜈0\nu=0italic_ν = 0 quantum hall state in monolayer graphene, Phys. Rev. B 85, 155439 (2012).
  20. Y.-H. Wu, Two-component parton fractional quantum hall state in graphene, Phys. Rev. B 106, 155132 (2022).
  21. N. Read and E. Rezayi, Beyond paired quantum hall states: Parafermions and incompressible states in the first excited landau level, Phys. Rev. B 59, 8084 (1999).
  22. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011).
  23. X.-G. Wen, Topological orders and edge excitations in fractional quantum hall states, Advances in Physics 44, 405 (1995).
  24. E. R. Gagliano and C. A. Balseiro, Dynamical properties of quantum many-body systems at zero temperature, Phys. Rev. Lett. 59, 2999 (1987).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com