Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vortex loop operators and quantum M2-branes (2312.17091v1)

Published 28 Dec 2023 in hep-th

Abstract: We study M2-branes in $AdS_4\times S7/{\mathbb Z}_k$ dual to 1/2 and 1/3 BPS vortex loop operators in ABJM theory and compute their one-loop correction beyond the classical M2-brane action. The correction depends only on the parity of $k$ and is independent of all continues parameters in the definition of the vortex loops. The result for odd $k$ agrees with the answers for the 1/2 BPS Wilson loop in the $k=1$ theory and for even $k$ with the one in the $k = 2$ theory. Combining with the classical part, we find that the natural expansion parameter seems to be $1/\sqrt{kN}$ rather than $1/\sqrt{N}$. This provides a further setting where semiclassical quantisation can be applied to M2-branes and produces new results inaccessible by other methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. J. M. Maldacena, “The large N𝑁Nitalic_N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, hep-th/9711200.
  2. O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “𝒩=6𝒩6{\cal N}=6caligraphic_N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 10 (2008) 091, arXiv:0806.1218.
  3. V. Pestun, “Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,” Commun. Math. Phys. 313 (2012) 71–129, arXiv:0712.2824.
  4. A. Kapustin, B. Willett, and I. Yaakov, “Exact results for Wilson loops in superconformal Chern-Simons theories with matter,” JHEP 03 (2010) 089, arXiv:0909.4559.
  5. N. Drukker, J. Plefka, and D. Young, “Wilson loops in 3-dimensional 𝒩=6𝒩6{\cal N}=6caligraphic_N = 6 supersymmetric Chern-Simons theory and their string theory duals,” JHEP 11 (2008) 019, arXiv:0809.2787.
  6. B. Chen and J.-B. Wu, “Supersymmetric Wilson loops in 𝒩=6𝒩6{\cal N}=6caligraphic_N = 6 super Chern-Simons-matter theory,” Nucl. Phys. B 825 (2010) 38–51, arXiv:0809.2863.
  7. S.-J. Rey, T. Suyama, and S. Yamaguchi, “Wilson loops in superconformal Chern-Simons theory and fundamental strings in anti-de sitter supergravity dual,” JHEP 03 (2009) 127, arXiv:0809.3786.
  8. A. Cagnazzo, D. Sorokin, and L. Wulff, “String instanton in A⁢d⁢S4×C⁢P3𝐴𝑑subscript𝑆4𝐶superscript𝑃3AdS_{4}\times CP^{3}italic_A italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT × italic_C italic_P start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT,” JHEP 05 (2010) 009, arXiv:0911.5228.
  9. N. Drukker, M. Mariño, and P. Putrov, “From weak to strong coupling in ABJM theory,” Commun. Math. Phys. 306 (2011) 511–563, arXiv:1007.3837.
  10. N. Drukker, M. Mariño, and P. Putrov, “Nonperturbative aspects of ABJM theory,” JHEP 11 (2011) 141, arXiv:1103.4844.
  11. Y. Hatsuda, S. Moriyama, and K. Okuyama, “Instanton bound states in ABJM theory,” JHEP 05 (2013) 054, arXiv:1301.5184.
  12. F. F. Gautason, V. G. M. Puletti, and J. van Muiden, “Quantized strings and instantons in holography,” JHEP 08 (2023) 218, arXiv:2304.12340.
  13. S. Giombi and A. A. Tseytlin, “Wilson loops at large N𝑁Nitalic_N and the quantum M2-brane,” Phys. Rev. Lett. 130 no. 20, (2023) 201601, arXiv:2303.15207.
  14. M. Beccaria and A. A. Tseytlin, “Comments on ABJM free energy on S3superscript𝑆3S^{3}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT at large N𝑁Nitalic_N and perturbative expansions in M-theory and string theory,” Nucl. Phys. B 994 (2023) 116286, arXiv:2306.02862.
  15. M. Beccaria, S. Giombi, and A. A. Tseytlin, “Instanton contributions to the ABJM free energy from quantum M2 branes,” JHEP 10 (2023) 029, arXiv:2307.14112.
  16. M. Beccaria, S. Giombi, and A. A. Tseytlin, “(2,0) theory on S5×S1superscript𝑆5superscript𝑆1S^{5}\times S^{1}italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT and quantum M2 branes,” Nucl. Phys. B 998 (2024) 116400, arXiv:2309.10786.
  17. O. J. Ganor, “Six-dimensional tensionless strings in the large N𝑁Nitalic_N limit,” Nucl. Phys. B 489 (1997) 95–121, hep-th/9605201.
  18. J. M. Maldacena, “Wilson loops in large N𝑁Nitalic_N field theories,” Phys. Rev. Lett. 80 (1998) 4859–4862, hep-th/9803002.
  19. D. E. Berenstein, R. Corrado, W. Fischler, and J. M. Maldacena, “The operator product expansion for Wilson loops and surfaces in the large N𝑁Nitalic_N limit,” Phys. Rev. D 59 (1999) 105023, hep-th/9809188.
  20. C. R. Graham and E. Witten, “Conformal anomaly of submanifold observables in AdS/CFT correspondence,” Nucl. Phys. B 546 (1999) 52–64, hep-th/9901021.
  21. N. Drukker, M. Probst, and M. Trépanier, “Surface operators in the 6d 𝒩=(2,0)𝒩20{\cal N}=(2,0)caligraphic_N = ( 2 , 0 ) theory,” J. Phys. A 53 no. 36, (2020) 365401, arXiv:2003.12372.
  22. N. Drukker, S. Giombi, A. A. Tseytlin, and X. Zhou, “Defect CFT in the 6d (2,0) theory from M2 brane dynamics in A⁢d⁢S7×S4𝐴𝑑subscript𝑆7superscript𝑆4AdS_{7}\times S^{4}italic_A italic_d italic_S start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT,” JHEP 07 (2020) 101, arXiv:2004.04562.
  23. N. Drukker, O. Shahpo, and M. Trépanier, “Quantum holographic surface anomalies,” arXiv:2311.14797.
  24. N. Drukker, J. Gomis, and D. Young, “Vortex loop operators, M2-branes and holography,” JHEP 03 (2009) 004, arXiv:0810.4344.
  25. G. W. Moore and N. Seiberg, “Taming the conformal zoo,” Phys. Lett. B 220 (1989) 422–430.
  26. B. Assel and J. Gomis, “Mirror symmetry and loop operators,” JHEP 11 (2015) 055, arXiv:1506.01718.
  27. A. Kapustin, B. Willett, and I. Yaakov, “Exact results for supersymmetric abelian vortex loops in 2+1 dimensions,” JHEP 06 (2013) 099, arXiv:1211.2861.
  28. N. Drukker, T. Okuda, and F. Passerini, “Exact results for vortex loop operators in 3d supersymmetric theories,” JHEP 07 (2014) 137, arXiv:1211.3409.
  29. N. Drukker and D. J. Gross, “An exact prediction of 𝒩=4𝒩4{\cal N}=4caligraphic_N = 4 SUSYM theory for string theory,” J. Math. Phys. 42 (2001) 2896–2914, hep-th/0010274.
  30. N. Drukker and D. Trancanelli, “A Supermatrix model for 𝒩=6𝒩6\mathcal{N}=6caligraphic_N = 6 super Chern-Simons-matter theory,” JHEP 02 (2010) 058, arXiv:0912.3006.
  31. V. Borokhov, A. Kapustin, and X.-k. Wu, “Topological disorder operators in three-dimensional conformal field theory,” JHEP 11 (2002) 049, hep-th/0206054.
  32. V. Borokhov, A. Kapustin, and X.-k. Wu, “Monopole operators and mirror symmetry in three-dimensions,” JHEP 12 (2002) 044, hep-th/0207074.
  33. S. Minwalla, A. Mishra, and N. Prabhakar, “Fermi seas from Bose condensates in Chern-Simons matter theories and a bosonic exclusion principle,” JHEP 11 (2020) 171, arXiv:2008.00024.
  34. N. Drukker, D. J. Gross, and A. A. Tseytlin, “Green-Schwarz string in A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT: Semiclassical partition function,” JHEP 04 (2000) 021, hep-th/0001204.
  35. S. Forste, “Membrany corrections to the string anti-string potential in M5-brane theory,” JHEP 05 (1999) 002, hep-th/9902068.
  36. M. Sakaguchi, H. Shin, and K. Yoshida, “Semiclassical analysis of M2-brane in A⁢d⁢S4×S7/ℤk𝐴𝑑subscript𝑆4superscript𝑆7subscriptℤ𝑘AdS_{4}\times S^{7}/\mathbb{Z}_{k}italic_A italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT / blackboard_Z start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT,” JHEP 12 (2010) 012, arXiv:1007.3354.
  37. H. Kim, N. Kim, and J. Hun Lee, “One-loop corrections to holographic Wilson loop in A⁢d⁢S4×C⁢P3𝐴𝑑subscript𝑆4𝐶superscript𝑃3AdS_{4}\times CP^{3}italic_A italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT × italic_C italic_P start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT,” J. Korean Phys. Soc. 61 (2012) 713–719, arXiv:1203.6343.
  38. E. I. Buchbinder and A. A. Tseytlin, “1/N1𝑁1/N1 / italic_N correction in the D3-brane description of a circular Wilson loop at strong coupling,” Phys. Rev. D 89 no. 12, (2014) 126008, arXiv:1404.4952.
  39. S. Giombi and A. A. Tseytlin, “Strong coupling expansion of circular Wilson loops and string theories in A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT and A⁢d⁢S4×C⁢P3𝐴𝑑subscript𝑆4𝐶superscript𝑃3AdS_{4}\times CP^{3}italic_A italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT × italic_C italic_P start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT,” JHEP 10 (2020) 130, arXiv:2007.08512.
  40. C. P. Herzog, I. R. Klebanov, S. S. Pufu, and T. Tesileanu, “Multi-matrix models and tri-sasaki Einstein spaces,” Phys. Rev. D 83 (2011) 046001, arXiv:1011.5487.
  41. A. Klemm, M. Mariño, M. Schiereck, and M. Soroush, “Aharony-Bergman-Jafferis-Maldacena Wilson loops in the Fermi gas approach,” Z. Naturforsch. A 68 no. 1-2, (2013) 178–209, arXiv:1207.0611.
  42. M. Mariño and P. Putrov, “Exact results in ABJM theory from topological strings,” JHEP 06 (2010) 011, arXiv:0912.3074.
  43. M. Mariño and P. Putrov, “ABJM theory as a Fermi gas,” J. Stat. Mech. 1203 (2012) P03001, arXiv:1110.4066.
  44. H. Fuji, S. Hirano, and S. Moriyama, “Summing up all genus free energy of ABJM matrix model,” JHEP 08 (2011) 001, arXiv:1106.4631.
  45. E. Bergshoeff, E. Sezgin, and P. K. Townsend, “Supermembranes and eleven-dimensional supergravity,” Phys. Lett. B 189 (1987) 75–78.
  46. H. Kihara and M. Nitta, “Generalized instantons on complex projective spaces,” J. Math. Phys. 50 (2009) 012301, arXiv:0807.1259.
  47. B. de Wit, K. Peeters, J. Plefka, and A. Sevrin, “The M-theory two-brane in A⁢d⁢S4×S7𝐴𝑑subscript𝑆4superscript𝑆7AdS_{4}\times S^{7}italic_A italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT and A⁢d⁢S7×S4𝐴𝑑subscript𝑆7superscript𝑆4AdS_{7}\times S^{4}italic_A italic_d italic_S start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT,” Phys. Lett. B 443 (1998) 153–158, hep-th/9808052.
  48. B. de Wit, K. Peeters, and J. Plefka, “Superspace geometry for supermembrane backgrounds,” Nucl. Phys. B 532 (1998) 99–123, hep-th/9803209.
  49. V. Forini, V. G. M. Puletti, L. Griguolo, D. Seminara, and E. Vescovi, “Remarks on the geometrical properties of semiclassically quantized strings,” J. Phys. A 48 no. 47, (2015) 475401, arXiv:1507.01883.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com