A modified AAA algorithm for learning stable reduced-order models from data (2312.16978v2)
Abstract: In recent years, the Adaptive Antoulas-Anderson AAA algorithm has established itself as the method of choice for solving rational approximation problems. Data-driven Model Order Reduction (MOR) of large-scale Linear Time-Invariant (LTI) systems represents one of the many applications in which this algorithm has proven to be successful since it typically generates reduced-order models (ROMs) efficiently and in an automated way. Despite its effectiveness and numerical reliability, the classical AAA algorithm is not guaranteed to return a ROM that retains the same structural features of the underlying dynamical system, such as the stability of the dynamics. In this paper, we propose a novel algebraic characterization for the stability of ROMs with transfer function obeying the AAA barycentric structure. We use this characterization to formulate a set of convex constraints on the free coefficients of the AAA model that, whenever verified, guarantee by construction the asymptotic stability of the resulting ROM. We suggest how to embed such constraints within the AAA optimization routine, and we validate experimentally the effectiveness of the resulting algorithm, named stabAAA, over a set of relevant MOR applications.
- A.C. Antoulas “A new result on passivity preserving model reduction” In Syst. Control Lett. 54.4 Elsevier, 2005, pp. 361–374 DOI: 10.1016/j.sysconle.2004.07.007
- A.C. Antoulas “Approximation of Large-Scale Dynamical Systems” 6, Adv. Des. Control Philadelphia, PA: SIAM Publications, 2005 DOI: 10.1137/1.9780898718713
- “On the scalar rational interpolation problem” In IMA J. Math. Control. Inf. 3.2-3, 1986, pp. 61–88 DOI: 10.1093/imamci/3.2-3.61
- A.C. Antoulas, C.A. Beattie and S. Gugercin “Interpolatory Methods for Model Reduction”, Computational Science & Engineering Philadelphia, PA: Society for IndustrialApplied Mathematics, 2020 DOI: 10.1137/1.9781611976083
- A.C. Antoulas, S. Lefteriu and A.C. Ionita “A tutorial introduction to the Loewner framework for model reduction” In Model Reduction and Approximation SIAM, 2017, pp. 335–376 DOI: 10.1137/1.9781611974829.ch8
- MOSEK ApS “The MOSEK optimization toolbox for MATLAB manual. Version 10.1.16.”, 2023 URL: https://docs.mosek.com/latest/toolbox/index.html
- “Practical challenges in data-driven interpolation: dealing with noise, enforcing stability, and computing realizations” Online Version of Record before inclusion in an issue In International Journal of Adaptive Control and Signal Processing John Wiley & Sons Ltd, 2023 URL: https://onlinelibrary.wiley.com/doi/10.1002/acs.3691?af=R
- “Structured model order reduction for vibro-acoustic problems using interpolation and balancing methods” In Journal of Sound and Vibration 543, 2023, pp. 117363 DOI: 10.1016/j.jsv.2022.117363
- “A tangential interpolation framework for the AAA algorithm” In Proc. Appl. Math. Mech. 23.3, 2023, pp. e202300183 DOI: 10.1002/pamm.202300183
- P.J. Baddoo “The AAAtrig algorithm for rational approximation of periodic functions” In SIAM J. Sci. Comput. 43.5 SIAM, 2021, pp. A3372–A3392 DOI: 10.1137/20M1359316
- I. Barkana “Comments on ”Design of strictly positive real systems using constant output feedback”” In IEEE Transactions on Automatic Control 49.11, 2004, pp. 2091–2093 DOI: 10.1109/TAC.2004.837565
- “Model Order Reduction based on Moment-Matching” In Model Order Reduction: Volume 1: System-and Data-Driven Methods and Algorithms De Gruyter, 2021, pp. 57–96 DOI: 10.1515/9783110498967-003
- P. Benner, P. Goyal and P. Van Dooren “Identification of Port-Hamiltonian systems from frequency response data” In Syst. Control Lett. 143, 2020, pp. 104741 DOI: 10.1016/j.sysconle.2020.104741
- “Model Order Reduction” Berlin, Boston: De Gruyter, 2021 DOI: doi:10.1515/9783110498967
- “Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms” In Comp. Meth. Appl. Mech. Eng. 372, 2020, pp. 113433 DOI: 10.1016/j.cma.2020.113433
- “The RKFIT algorithm for nonlinear rational approximation” In SIAM Journal on Scientific Computing 39.5 SIAM, 2017, pp. A2049–A2071 DOI: 10.1137/15M1025426
- “Barycentric Lagrange interpolation” In SIAM Rev. 46.3 SIAM, 2004, pp. 501–517 DOI: 10.1137/S0036144502417715
- “An instrumental variable Vector-Fitting approach for noisy frequency responses” In IEEE Transactions on Microwave Theory and Techniques 60.9, 2012, pp. 2702–2712 DOI: 10.1109/TMTT.2012.2206399
- “Data-Driven Extraction of Uniformly Stable and Passive Parameterized Macromodels” In IEEE Access 10, 2022, pp. 15786–15804 DOI: 10.1109/ACCESS.2022.3147034
- “Handling initial conditions in Vector Fitting for real time modeling of Power System dynamics” In Energies 14.9, 2021 DOI: 10.3390/en14092471
- “Balancing-related model reduction methods” In System-and Data-Driven Methods and Algorithms Walter de Gruyter GmbH & Co KG, 2021, pp. 15–56 DOI: 10.1515/9783110498967-002
- “Passivity preserving model reduction via spectral factorization” In Automatica J. IFAC 142, 2022, pp. Paper No. 110368\bibrangessep12 DOI: 10.1016/j.automatica.2022.110368
- “Dissipative systems analysis and control” In Theory and Applications 2, Communications and Control Engineering (CCE) Springer, 2007 DOI: 10.1007/978-1-84628-517-2
- “Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control” Cambridge University Press, 2022 URL: https://books.google.de/books?id=rxNkEAAAQBAJ
- S.L. Brunton, J.L. Proctor and J.N. Kutz “Discovering governing equations from data by sparse identification of nonlinear dynamical systems” In Proceedings of the National Academy of Sciences 113.15, 2016, pp. 3932–3937 DOI: 10.1073/pnas.1517384113
- A. Carracedo Rodriguez, L. Balicki and S. Gugercin “The p-AAA algorithm for data driven modeling of parametric dynamical systems” math.NA, 2020 URL: https://arxiv.org/abs/2003.06536
- “Improving accuracy after stability enforcement in the Loewner matrix framework” In IEEE Transactions on Microwave Theory and Techniques 70.2 IEEE, 2021, pp. 1037–1047
- “LMI properties and applications in systems, stability, and control theory” In arXiv preprint, 2019 DOI: 10.48550/arXiv.1903.08599
- K. Cherifi, P. Goyal and P. Benner “A greedy data collection scheme for linear dynamical systems” In Data-Centric Eng. 3 Cambridge University Press, 2022 DOI: 10.1017/dce.2022.16
- “On the parallelization of Vector Fitting algorithms” In IEEE Transactions on Components, Packaging and Manufacturing Technology 1.11, 2011, pp. 1761–1773 DOI: 10.1109/TCPMT.2011.2167973
- “Black box stability preserving reduction techniques in the Loewner framework for the efficient time domain simulation of dynamical systems with damping treatments” In Journal of Sound and Vibration 529, 2022, pp. 116922 DOI: 10.1016/j.jsv.2022.116922
- “Iterative stability enforcement in Adaptive Antoulas-Anderson algorithms for H2subscript𝐻2H_{2}italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Model Reduction” In SIAM Journal on Scientific Computing 45.4, 2023 DOI: 10.1137/21M1467043
- E. Deckers, S. Jonckheere and K. Meerbergen “Time integration of finite element models with nonlinear frequency dependencies” In arXiv preprint, 2022 DOI: 10.48550/arXiv.2206.09617
- N. Derevianko, G. Plonka and M. Petz “From ESPRIT to ESPIRA: estimation of signal parameters by iterative rational approximation” In IMA Journal of Numerical Analysis 43.2 Oxford University Press, 2023, pp. 789–827 DOI: 10.1093/imanum/drab108
- “Macromodeling of Multiport Systems Using a Fast Implementation of the Vector Fitting Method” In Microwave and Wireless Components Letters, IEEE 18.6, 2008, pp. 383–385 DOI: 10.1109/LMWC.2008.922585
- T. Driscoll, Y. Nakatsukasa and L.N. Trefethen “AAA rational approximation on a continuum” In arXiv preprint arXiv:2305.03677, 2023 DOI: 10.48550/arXiv.2305.03677
- “Representation of conformal maps by rational functions” In Numer. Math. 142.2 Springer, 2019, pp. 359–382 DOI: 10.1007/s00211-019-01023-z
- “Rational approximation of the absolute value function from measurements: a numerical study of recent methods” In arXiv preprint arXiv:2005.02736, 2020 DOI: 10.48550/arXiv.2005.02736
- “Stability preserving post-processing methods applied in the Loewner framework” In IEEE 20th Workshop on Signal and Power Integrity (SPI), Turin, Italy, May 8–11, 2016, pp. 1–4 DOI: 10.1109/SaPIW.2016.7496283
- “Data-driven modeling of linear dynamical systems with quadratic output in the AAA framework” In J. Sci. Comput. 91.1 Springer, 2022, pp. 1–28 DOI: 10.1007/s10915-022-01771-5
- “Algorithms for the rational approximation of matrix-valued functions” In SIAM J. Sci. Comput. 43.5 Society for Industrial & Applied Mathematics (SIAM), 2021, pp. A3033–A3054 DOI: 10.1137/20m1324727
- I.V. Gosea, C. Poussot-Vassal and A.C. Antoulas “On enforcing stability for data-driven reduced-order models” In 29th Mediterranean Conference on Control and Automation (MED), Virtual, 2021, pp. 487–493 DOI: 10.1109/MED51440.2021.9480216
- P. Goyal, B. Peherstorfer and P. Benner “Rank-minimizing and structured model inference” In arXiv preprint, 2023 DOI: 10.48550/arXiv.2302.09521
- P. Goyal, I. Pontes Duff and P. Benner “Guaranteed Stable Quadratic Models and their applications in SINDy and Operator Inference” In arXiv preprint, 2023 DOI: 10.48550/arXiv.2308.13819
- P. Goyal, I. Pontes Duff and P. Benner “Inference of Continuous Linear Systems from Data with Guaranteed Stability” In arXiv preprint, 2023 DOI: 10.48550/arXiv.2301.10060
- S. Grivet-Talocia “Passivity enforcement via perturbation of Hamiltonian matrices” In IEEE Transactions on Circuits and Systems I: Regular Papers 51.9 IEEE, 2004, pp. 1755–1769 DOI: 10.1109/TCSI.2004.834527
- “Improving the convergence of Vector Fitting for equivalent circuit extraction from noisy frequency responses” In IEEE Trans. Electromagnetic Compatibility 48.1, 2006, pp. 104–120 DOI: 10.1109/TEMC.2006.870814
- “Passive macromodeling: Theory and applications” ISBN: 978-1-118-09491-4 John Wiley & Sons, 2015
- S. Gugercin, A.C. Antoulas and N. Bedrossian “Approximation of the International Space Station 1R and 12A models” In Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) IEEE, 2001 DOI: 10.1109/cdc.2001.981109
- “Rational approximation of frequency domain responses by vector fitting” In IEEE Transactions on Power Delivery 14.3, 1999, pp. 1052–1061 DOI: 10.1109/61.772353
- A. Ilchmann “Non-identifier-based high-gain adaptive control” Springer, 1993 DOI: 10.1007/BFb0032266
- R. Ionutiu, J. Rommes and A.C. Antoulas “Passivity preserving model reduction using dominant spectral zero interpolation” In IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 27.12, 2008, pp. 2250–2263 DOI: 10.1109/TCAD.2008.2006160
- D.S. Karachalios, I.V. Gosea and A.C. Antoulas “The Loewner framework for system identification and reduction” In Methods and Algorithms 1, Handbook on Model Reduction De Gruyter, 2021 DOI: 10.1515/9783110498967-006
- P. Kergus “Data-driven stability analysis and enforcement for Loewner Data-Driven Control” https://hal.science/hal-03095975/document In Workshop Intersections between Learning, Control and Optimization (IPAM, UCLA), 2020
- “On the convergence of the Vector-Fitting algorithm” In Microwave Theory and Techniques, IEEE Transactions on 61.4, 2013, pp. 1435–1443 DOI: 10.1109/TMTT.2013.2246526
- “Automatic rational approximation and linearization of nonlinear eigenvalue problems” In IMA J. Numer. Anal. 42.2 Oxford University Press, 2022, pp. 1087–1115 DOI: 10.1093/imanum/draa098
- L. Ljung “System Identification: Theory for the User” (2nd edition), ISBN: 0-13-656695-2 Prentice Hall, Upper Saddle River, New Jersey, 07458, 1999
- J. Löfberg “YALMIP : A Toolbox for Modeling and Optimization in MATLAB” In In Proceedings of the CACSD Conference, 2004 DOI: 10.1109/CACSD.2004.1393890
- “A framework for the solution of the generalized realization problem” In Linear Algebra Appl. 425.2-3, 2007, pp. 634–662 DOI: 10.1016/j.laa.2007.03.008
- Y. Nakatsukasa, O. Sete and L.N. Trefethen “The AAA algorithm for rational approximation” In SIAM J. Sci. Comput. 40.3, 2018, pp. A1494–A1522 DOI: 10.1137/16M1106122
- “A greedy Rational Krylov method for H2subscript𝐻2H_{2}italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-pseudooptimal model order reduction with preservation of stability” In Proceedings of the American Control Conference, 2013, pp. 5512–5517 DOI: 10.1109/ACC.2013.6580700
- “Data-driven operator inference for nonintrusive projection-based model reduction” In Comp. Meth. Appl. Mech. Eng. 306, 2016, pp. 196–215 DOI: 10.1016/j.cma.2016.03.025
- “A technique for non-intrusive greedy piecewise-rational model reduction of frequency response problems over wide frequency bands” In Journal of Mathematics in Industry 12.1 SpringerOpen, 2022, pp. 1–12 DOI: 10.1186/s13362-021-00117-4
- “Exploring efficient variability-aware analysis method for high-speed digital link design using PCE” In Proc. UBM DesignCon, 2017 URL: https://www.signalintegrityjournal.com/articles/699-designcon-personal-reflections-on-the-past-twenty-years
- J.L. Proctor, S.L. Brunton and J.N. Kutz “Dynamic Mode Decomposition with Control” In SIAM Journal on Applied Dynamical Systems 15.1, 2016, pp. 142–161 DOI: 10.1137/15M1013857
- “Lyapunov balancing for passivity-preserving model reduction of RC circuits”, 2011, pp. 1–34 DOI: 10.1137/090779802
- “A balancing approach to the realization of systems with internal passivity and reciprocity” In Syst. Control Lett. 60.1, 2011, pp. 69–74 DOI: 10.1016/j.sysconle.2010.10.009
- R. Rumpler, P. Göransson and Jean-François Deü “A finite element approach combining a reduced-order system, Padé approximants, and an adaptive frequency windowing for fast multi-frequency solution of poro-acoustic problems” In International Journal for Numerical Methods in Engineering 97.10, 2014, pp. 759–784 DOI: 10.1002/nme.4609
- “Transfer function synthesis as a ratio of two complex polynomials” In IEEE Transactions on Automatic Control 8.1, 1963, pp. 56–58 DOI: 10.1109/TAC.1963.1105517
- P.J. Schmid “Dynamic mode decomposition of numerical and experimental data” In J. Fluid Mech. 656 Cambridge University Press, 2010, pp. 5–28 DOI: 10.1017/S0022112010001217
- J Taylor “Strictly positive-real functions and the Lefschetz-Kalman Yakubovich (LKY) lemma” In IEEE Transactions on Circuits and Systems 21.2 IEEE, 1974, pp. 310–311 DOI: 10.1109/TCS.1974.1083816
- P. Triverio “Robust causality check for sampled scattering parameters via a filtered Fourier transform” In IEEE Microwave and Wireless Components Letters 24.2, 2014, pp. 72–74 DOI: 10.1109/LMWC.2013.2290218
- “Robust causality characterization via generalized dispersion relations” In IEEE Trans. Advanced Packaging 31.3, 2008, pp. 579–593 DOI: 10.1109/TADVP.2008.927850
- “Stability, causality, and passivity in electrical interconnect models” In IEEE Transactions on Advanced Packaging 30.4 IEEE, 2007, pp. 795–808 DOI: 10.1109/TADVP.2007.901567
- “AAA algorithm for rational transfer function approximation with stable poles” In IEEE Letters on Electromagnetic Compatibility Practice and Applications 3.3 IEEE, 2021, pp. 92–95 DOI: 10.1109/LEMCPA.2021.3104455
- P. Van Overschee and B. De Moor “N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems” In Automatica 30.1 Elsevier, 1994, pp. 75–93 DOI: 10.1016/0005-1098(94)90230-5
- P. Van Overschee and B. De Moor “Subspace identification for linear systems: Theory — Implementation — Applications” Springer Science & Business Media, 2012 DOI: 10.1007/978-1-4613-0465-4
- “Iterative convex overbounding algorithms for BMI optimization problems” 20th IFAC World Congress In IFAC-PapersOnLine 50.1, 2017, pp. 10449–10455 DOI: 10.1016/j.ifacol.2017.08.1974
- H. Wilber, A. Damle and A. Townsend “Data-Driven Algorithms for Signal Processing with Trigonometric Rational Functions” In SIAM J. Sci. Comput. 44.3 SIAM, 2022, pp. C185–C209 DOI: 10.1137/21M1420277
- “Uniformly Stable Parameterized Macromodeling Through Positive Definite Basis Functions” In IEEE Transactions on Components, Packaging and Manufacturing Technology 10.11, 2020, pp. 1782–1794 DOI: 10.1109/TCPMT.2020.3012275