Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial Dynamics of Higher Order Rock-Paper-Scissors and Generalisations (2312.16722v1)

Published 27 Dec 2023 in nlin.PS

Abstract: We introduce and study the spatial replicator equation with higher order interactions and both infinite (spatially homogeneous) populations and finite (spatially inhomogeneous) populations. We show that in the special case of three strategies (rock-paper-scissors) higher order interaction terms allow travelling waves to emerge in non-declining finite populations. We show that these travelling waves arise from diffusion stabilisation of an unstable interior equilibrium point that is present in the aspatial dynamics. Based on these observations and prior results, we offer two conjectures whose proofs would fully generalise our results to all odd cyclic games, both with and without higher order interactions, assuming a spatial replicator dynamic. Intriguingly, these generalisations for $N \geq 5$ strategies seem to require declining populations, as we show in our discussion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. S. Allesina and J. M. Levine, A competitive network theory of species diversity, Proceedings of the National Academy of Sciences 108, 5638 (2011).
  2. J. Paik and C. Griffin, Completely integrable replicator dynamics associated to competitive networks, Physical Review E 107, L052202 (2023).
  3. Y. Itoh, Integrals of a lotka-volterra system of odd number of variables, Progress of theoretical physics 78, 507 (1987).
  4. A. P. Veselov and A. B. Shabat, Dressing chains and spectral theory of the schrodinger operator, Funktsional’nyi Analiz i ego Prilozheniya 27, 1 (1993).
  5. O. Bogoyavlensky, Integrable discretizations of the kdv equation, Physics Letters A 134, 34 (1988).
  6. R. M. May, Will a large complex system be stable?, Nature 238, 413 (1972).
  7. M. J. Pomerantz, Do” higher order interactions” in competition systems really exist?, The American Naturalist 117, 583 (1981).
  8. R. A. Relyea and K. L. Yurewicz, Predicting community outcomes from pairwise interactions: integrating density-and trait-mediated effects, Oecologia 131, 569 (2002).
  9. E. Bairey, E. D. Kelsic, and R. Kishony, High-order species interactions shape ecosystem diversity, Nature communications 7, 1 (2016).
  10. T. Gibbs, S. A. Levin, and J. M. Levine, Coexistence in diverse communities with higher-order interactions, Proceedings of the National Academy of Sciences 119, e2205063119 (2022), https://www.pnas.org/doi/pdf/10.1073/pnas.2205063119 .
  11. R. Lambiotte, M. Rosvall, and I. Scholtes, From networks to optimal higher-order models of complex systems, Nature physics 15, 313 (2019).
  12. M. M. Mayfield and D. B. Stouffer, Higher-order interactions capture unexplained complexity in diverse communities, Nature ecology & evolution 1, 1 (2017).
  13. H. Mickalide and S. Kuehn, Higher-order interaction between species inhibits bacterial invasion of a phototroph-predator microbial community, Cell Systems 9, 521 (2019).
  14. J. Deng, W. Taylor, and S. Saavedra, Understanding the impact of third-party species on pairwise coexistence, PLOS Computational Biology 18, e1010630 (2022).
  15. J. W. Weibull, Evolutionary Game Theory (MIT Press, 1997).
  16. J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, 1998).
  17. J. Hofbauer and K. Sigmund, Evolutionary Game Dynamics, Bulletin of the American Mathematical Society 40, 479 (2003).
  18. C. Griffin and R. Wu, Higher-order dynamics in the replicator equation produce a limit cycle in rock-paper-scissors, Europhysics Letters 142, 33001 (2023).
  19. E. C. Zeeman, Population dynamics from game theory, in Global Theory of Dynamical Systems, Springer Lecture Notes in Mathematics No. 819 (Springer, 1980) pp. 471–497.
  20. C. S. Gokhale and A. Traulsen, Evolutionary games in the multiverse, Proceedings of the National Academy of Sciences 107, 5500 (2010).
  21. T. Peixe and A. Rodrigues, Persistent strange attractors in 3d polymatrix replicators, Physica D: Nonlinear Phenomena 438, 133346 (2022).
  22. H. N. Alishah and P. Duarte, Hamiltonian evolutionary games, Journal of Dynamics and Games 2, 33 (2015).
  23. E. Paulson and C. Griffin, Cooperation can emerge in prisoner’s dilemma from a multi-species predator prey replicator dynamic, Mathematical biosciences 278, 56 (2016).
  24. R. Cressman and G. Vickers, Spatial and density effects in evolutionary game theory, Journal of theoretical biology 184, 359 (1997).
  25. R. deForest and A. Belmonte, Spatial pattern dynamics due to the fitness gradient flux in evolutionary games, Physical Review E 87 (2013).
  26. M. Nowak and R. May, Evolutionary games and spatial chaos, Nature 359.6398, 826 (1992).
  27. C. Roca, J. Cuesta, and A. Sánchez, Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics, Physics of life reviews 6.4, 208 (2009).
  28. G. Szabó, A. Szolnoki, and R. Izsák, Rock-scissors-paper game on regular small-world networks, Journal of physics A: Mathematical and General 37.7, 2599 (2004).
  29. G. Vickers, Spatial patterns and ESS’s, Journal of Theoretical Biology 140, 129 (1989).
  30. G. Vickers, Spatial patterns and travelling waves in population genetics, Journal of Theoretical Biology 150, 329 (1991).
  31. Q. He, M. Mobilia, and U. C. Täuber, Spatial rock-paper-scissors models with inhomogeneous reaction rates, Physical Review E 82, 051909 (2010).
  32. B. Szczesny, M. Mobilia, and A. M. Rucklidge, Characterization of spiraling patterns in spatial rock-paper-scissors games, Physical Review E 90, 032704 (2014).
  33. C. Postlethwaite and A. Rucklidge, Spirals and heteroclinic cycles in a spatially extended rock-paper-scissors model of cyclic dominance, EPL (Europhysics Letters) 117, 48006 (2017).
  34. C. M. Postlethwaite and A. M. Rucklidge, A trio of heteroclinic bifurcations arising from a model of spatially-extended rock–paper–scissors, Nonlinearity 32, 1375 (2019).
  35. R. Durrett and S. Levin, The Importance of Being Discrete (and Spatial), Theoretical Population Biology 46, 363 (1994).
  36. C. Griffin, On a finite population variation of the fisher–kpp equation, Communications in Nonlinear Science and Numerical Simulation , 107369 (2023).
  37. H. Fort, On evolutionary spatial heterogeneous games, Physica A: Statistical Mechanics and its Applications 387, 1613 (2008).
  38. T. Killingback and M. Doebeli, Spatial evolutionary game theory: Hawks and doves revisited, Proceedings of the Royal Society of London. Series B: Biological Sciences 263, 1135 (1996).
  39. J. Miekisz, Statistical mechanics of spatial evolutionary games, Journal of Physics A: Mathematical and General 37, 9891 (2004).
  40. M. A. Nowak, S. Bonhoeffer, and R. M. May, More spatial games, International Journal of Bifurcation and Chaos 4, 33 (1994).
  41. H. Ohtsuki and M. A. Nowak, Evolutionary games on cycles, Proceedings of the Royal Society B: Biological Sciences 273, 2249 (2006).
  42. M. Perc, Chaos promotes cooperation in the spatial prisoner’s dilemma game, Europhysics Letters 75, 841 (2006).
  43. G. Szabó and K. Hódsági, The role of mixed strategies in spatial evolutionary games, Physica A: Statistical Mechanics and its Applications 462, 198 (2016).
  44. J. Y. Wakano and C. Hauert, Pattern formation and chaos in spatial ecological public goodsgames, Journal of theoretical biology 268, 30 (2011).
  45. R. M. May, Spatial chaos and its role in ecology and evolution, in Frontiers in mathematical Biology (Springer, 1994) pp. 326–344.
  46. V. Hutson and G. T. Vickers, Travelling waves and dominance of ess’s, Journal of Mathematical Biology 30, 457 (1992).
  47. G. Vickers, V. Hutson, and C. J. Budd, Spatial patterns in population conflicts, Journal of Mathematical Biology 31, 411 (1993).
  48. V. Hutson and G. Vickers, The spatial struggle of tit-for-tat and defect, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 348, 393 (1995).
  49. A. S. Bratus, V. P. Posvyanskii, and A. S. Novozhilov, A note on the replicator equation with explicit space and global regulation, Mathematical Biosciences and Engineering 8, 659 (2011).
  50. A. S. Novozhilov, V. P. Posvyanskii, and A. S. Bratus, On the reaction–diffusion replicator systems: spatial patterns and asymptotic behaviour, Russian Journal of Numerical Analysis and Mathematical Modelling 26, 555 (2012).
  51. V. Kaitala, Travelling waves in spatial population dynamics, in Annales Zoologici Fennici (JSTOR, 2002) pp. 161–171.
  52. M. Kot, Discrete-time travelling waves: ecological examples, Journal of mathematical biology 30, 413 (1992).
  53. J. A. Sherratt and M. J. Smith, Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models, Journal of the Royal Society Interface 5, 483 (2008).
  54. Y. A. Kuznetsov, I. A. Kuznetsov, and Y. Kuznetsov, Elements of applied bifurcation theory, Vol. 112 (Springer, 1998).
  55. D. Pais, C. H. Caicedo-Nunez, and N. E. Leonard, Hopf bifurcations and limit cycles in evolutionary network dynamics, SIAM Journal on Applied Dynamical Systems 11, 1754 (2012).
  56. J. D. Murray and J. D. Murray, Mathematical Biology: II: Spatial Models and Biomedical Applications, Vol. 3 (Springer, 2003).
  57. P. J. Davis, Circulant Matrices, 2nd ed. (American Mathematical Society, 2012).
  58. C. Griffin and J. Fan, Control problems with vanishing lie bracket arising from complete odd circulant evolutionary games, Journal of Dynamics & Games  (2022).
  59. R. Dilão, Turing instabilities and patterns near a hopf bifurcation, Applied mathematics and computation 164, 391 (2005).
Citations (1)

Summary

We haven't generated a summary for this paper yet.