Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic model of tissue electroporation on the basis of biological dispersion and Joule heating (2312.16705v2)

Published 27 Dec 2023 in eess.SY, cs.SY, and q-bio.TO

Abstract: Electroporation is a complex, iterative, and nonlinear phenomenon that is often studied by numerical simulations. In recent years, tissue electroporation simulations have been performed using static models. However, the results of a static model simulation are restricted to a fixed protocol signature of the pulsed electric field. This paper describes a novel dynamic model of tissue electroporation that also includes tissue dispersion and temperature to allow time-domain simulations. We implemented the biological dispersion of potato tubers and thermal analysis in a commercial finite element method software. A cell electroporation model was adapted to account for the increase in tissue conductivity. The model yielded twelve parameters, divided into three dynamic states of electroporation. Thermal analysis describes the dependence of tissue conductivity on temperature. The model parameters were evaluated using experiments with vegetal tissue (Solanum tuberosum) under electrochemotherapy protocols. The proposed model can accurately predict the conductivity of tissue under electroporation from 10 kV/m to 100 kV/m. A negligible thermal effect was observed at 100 kV/m, with a 0.89 {\deg}C increase. We believe that the proposed model is suitable for describing the electroporation current on a tissue scale and also for providing a hint on the effects on the cell membrane.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. T. Kotnik, P. Kramar, G. Pucihar, D. Miklavcic, and M. Tarek, “Cell membrane electroporation- part 1: The phenomenon,” IEEE Electrical Insulation Magazine 28, 14–23 (2012).
  2. X. Chen, L. Zhu, R. Li, L. Pang, S. Zhu, J. Ma, L. Du, and Y. Jin, “Electroporation-enhanced transdermal drug delivery: Effects of logP, pKa, solubility and penetration time,” European Journal of Pharmaceutical Sciences 151, 105410 (2020).
  3. T. B. Napotnik, T. Polajžer, and D. Miklavčič, “Cell death due to electroporation – a review,” Bioelectrochemistry 141, 107871 (2021).
  4. B. Jakstys, M. Jakutaviciute, D. Uzdavinyte, I. Satkauskiene, and S. Satkauskas, “Correlation between the loss of intracellular molecules and cell viability after cell electroporation,” Bioelectrochemistry 135, 107550 (2020).
  5. S. Haberl, D. Miklavcic, G. Sersa, W. Frey, and B. Rubinsky, “Cell membrane electroporation-part 2: the applications,” IEEE Electrical Insulation Magazine 29, 29–37 (2013).
  6. K. Rakoczy, M. Kisielewska, M. Sędzik, L. Jonderko, J. Celińska, N. Sauer, W. Szlasa, J. Saczko, V. Novickij, and J. Kulbacka, “Electroporation in clinical applications—the potential of gene electrotransfer and electrochemotherapy,” Applied Sciences 12, 10821 (2022).
  7. L. Delemotte and M. Tarek, “Molecular dynamics simulations of lipid membrane electroporation,” The Journal of Membrane Biology 245, 531–543 (2012).
  8. L. G. Campana, I. Edhemovic, D. Soden, A. M. Perrone, M. Scarpa, L. Campanacci, M. Cemazar, S. Valpione, D. Miklavčič, S. Mocellin, E. Sieni, and G. Sersa, “Electrochemotherapy – emerging applications technical advances, new indications, combined approaches, and multi-institutional collaboration,” European Journal of Surgical Oncology 45, 92–102 (2019).
  9. L. M. Mir, J. Gehl, G. Sersa, C. G. Collins, J.-R. Garbay, V. Billard, P. F. Geertsen, Z. Rudolf, G. C. O’Sullivan, and M. Marty, “Standard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes,” European Journal of Cancer Supplements 4, 14–25 (2006).
  10. J. Gehl, G. Sersa, L. W. Matthiessen, T. Muir, D. Soden, A. Occhini, P. Quaglino, P. Curatolo, L. G. Campana, C. Kunte, A. J. P. Clover, G. Bertino, V. Farricha, J. Odili, K. Dahlstrom, M. Benazzo, and L. M. Mir, “Updated standard operating procedures for electrochemotherapy of cutaneous tumours and skin metastases,” Acta Oncologica 57, 874–882 (2018).
  11. M. M. Taques, R. Guedert, K. Moreno, M. M. M. Rangel, and D. O. H. Suzuki, “Adjuvant electrochemotherapy after debulking in canine bone osteosarcoma infiltration,” Artificial Organs 45, 309–315 (2020).
  12. D. L. L. S. Andrade, R. Guedert, G. B. Pintarelli, M. M. M. Rangel, K. D. Oliveira, P. G. Quadros, and D. O. H. Suzuki, “Electrochemotherapy treatment safety under parallel needle deflection,” Scientific Reports 12 (2022), 10.1038/s41598-022-06747-x.
  13. R. Guedert, G. B. Pintarelli, F. R. M. B. Silva, and D. O. H. Suzuki, “Effects of pulse repetition rate in static electrochemotherapy models,” Bioelectrochemistry 153, 108499 (2023a).
  14. R. Guedert, D. L. L. S. Andrade, G. B. Pintarelli, and D. O. H. Suzuki, “Biological dispersion in the time domain using finite element method software,” Scientific Reports 13 (2023b), 10.1038/s41598-023-49828-1.
  15. R. E. Neal, P. A. Garcia, J. L. Robertson, and R. V. Davalos, “Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning,” IEEE Transactions on Biomedical Engineering 59, 1076–1085 (2012).
  16. C. Suárez, A. Soba, F. Maglietti, N. Olaiz, and G. Marshall, “The role of additional pulses in electropermeabilization protocols,” PLoS ONE 9, e113413 (2014).
  17. Y. Zhao, S. Zheng, N. Beitel-White, H. Liu, C. Yao, and R. V. Davalos, “Development of a multi-pulse conductivity model for liver tissue treated with pulsed electric fields,” Frontiers in Bioengineering and Biotechnology 8 (2020), 10.3389/fbioe.2020.00396.
  18. J. Langus, M. Kranjc, B. Kos, T. Šuštar, and D. Miklavčič, “Dynamic finite-element model for efficient modelling of electric currents in electroporated tissue,” Scientific Reports 6 (2016), 10.1038/srep26409.
  19. D. Voyer, A. Silve, L. M. Mir, R. Scorretti, and C. Poignard, “Dynamical modeling of tissue electroporation,” Bioelectrochemistry 119, 98–110 (2018).
  20. A. Ramos and R. L. Weinert, “Mathematical and computational method for electrical analysis of biological tissues,” Journal of Computational Electronics 17, 382–391 (2018).
  21. R. Weinert, E. Pereira, and A. Ramos, “Inclusion of memory effects in a dynamic model of electroporation in biological tissues,” Artificial Organs 43, 688–693 (2019).
  22. R. L. Weinert, M. A. Knabben, E. M. Pereira, C. E. Garcia, and A. Ramos, “Dynamic electroporation model evaluation on rabbit tissues,” Annals of Biomedical Engineering 49, 2503–2512 (2021).
  23. M. Leguèbe, A. Silve, L. Mir, and C. Poignard, “Conducting and permeable states of cell membrane submitted to high voltage pulses: Mathematical and numerical studies validated by the experiments,” Journal of Theoretical Biology 360, 83–94 (2014).
  24. J. C. Neu and W. Krassowska, “Asymptotic model of electroporation,” Physical Review E 59, 3471–3482 (1999).
  25. W. Krassowska and P. D. Filev, “Modeling electroporation in a single cell,” Biophysical Journal 92, 404–417 (2007).
  26. C. Yao, Y. Zhao, H. Liu, S. Dong, Y. Lv, and J. Ma, “Dielectric variations of potato induced by irreversible electroporation under different pulses based on the cole-cole model,” IEEE Transactions on Dielectrics and Electrical Insulation 24, 2225–2233 (2017a).
  27. G. B. Pintarelli, J. R. da Silva, W. Yang, and D. O. H. Suzuki, “Dielectric dispersion modulated sensing of yeast suspension electroporation,” Sensors 22, 1811 (2022).
  28. C. L. Brace, “Temperature-dependent dielectric properties of liver tissue measured during thermal ablation: Toward an improved numerical model,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2008).
  29. P. K. Kumar, K. Bhunia, J. Tang, B. A. Rasco, P. S. Takhar, and S. S. Sablani, “Thermal transition and thermo-physical properties of potato (solanum tuberosum l.) var. russet brown,” Journal of Food Measurement and Characterization 12, 1572–1580 (2018).
  30. J. Trejos-Taborda, L. Reyes-Osorio, C. Garza, P. del Carmen Zambrano-Robledo, and O. Lopez-Botello, “Finite element modeling of melt pool dynamics in laser powder bed fusion of 316l stainless steel,” The International Journal of Advanced Manufacturing Technology 120, 3947–3961 (2022).
  31. J. Gehl, G. Sersa, J. Garbay, D. Soden, Z. Rudolf, M. Marty, G. O’Sullivan, P. F. Geertsen, and L. M. Mir, “Results of the ESOPE (european standard operating procedures on electrochemotherapy) study: Efficient, highly tolerable and simple palliative treatment of cutaneous and subcutaneous metastases from cancers of any histology,” Journal of Clinical Oncology 24, 8047–8047 (2006).
  32. W. Milestone, C. Baker, A. L. Garner, and R. P. Joshi, “Electroporation from mitochondria to cell clusters: Model development toward analyzing electrically driven bioeffects over a large spatial range,” Journal of Applied Physics 133 (2023), 10.1063/5.0154789.
  33. D. L. Andrade, G. B. Pintarelli, J. V. Rosa, I. B. Paro, P. J. Pagano, J. C. Silva, and D. O. Suzuki, “Musa acuminata as electroporation model,” Bioelectrochemistry 154, 108549 (2023).
  34. J. C. Weaver and Y. Chizmadzhev, “Theory of electroporation: A review,” Bioelectrochemistry and Bioenergetics 41, 135–160 (1996).
  35. R. W. Glaser, S. L. Leikin, L. V. Chernomordik, V. F. Pastushenko, and A. I. Sokirko, “Reversible electrical breakdown of lipid bilayers: formation and evolution of pores,” Biochimica et Biophysica Acta (BBA) - Biomembranes 940, 275–287 (1988).
  36. M. Scuderi, J. Dermol-Černe, C. A. da Silva, A. Muralidharan, P. E. Boukany, and L. Rems, “Models of electroporation and the associated transmembrane molecular transport should be revisited,” Bioelectrochemistry 147, 108216 (2022).
  37. A. Barnett and J. C. Weaver, “Electroporation: a unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 320, 163–182 (1991).
  38. G. Saulis, “Cell electroporation: Part 3. theoretical investigation of the appearance of asymmetric distribution of pores on the cell and their further evolution,” Bioelectrochemistry and Bioenergetics 32, 249–265 (1993).
  39. R. Davalos, B. Rubinsky, and D. Otten, “A feasibility study for electrical impedance tomography as a means to monitor tissue electroporation for molecular medicine,” IEEE Transactions on Biomedical Engineering 49, 400–403 (2002).
  40. Y. Mi, X. Wu, J. Xu, W. Zheng, C. Ma, W. Chen, and Q. Zhang, “Effect of the mechanical properties of the cell membrane on the transition energy barrier of electroporation,” Journal of Applied Physics 131 (2022), 10.1063/5.0080034.
  41. W. Milestone, Q. Hu, A. M. Loveless, A. L. Garner, and R. P. Joshi, “Modeling coupled single cell electroporation and thermal effects from nanosecond electric pulse trains,” Journal of Applied Physics 132 (2022), 10.1063/5.0107544.
  42. D. O. H. Suzuki, A. Ramos, M. C. M. Ribeiro, L. H. Cazarolli, F. R. M. B. Silva, L. D. Leite, and J. L. B. Marques, “Theoretical and experimental analysis of electroporated membrane conductance in cell suspension,” IEEE Transactions on Biomedical Engineering 58, 3310–3318 (2011).
  43. I. P. Sugar, W. Förster, and E. Neumann, “Model of cell electrofusion,” Biophysical Chemistry 26, 321–335 (1987).
  44. S. Freeman, M. Wang, and J. Weaver, “Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation,” Biophysical Journal 67, 42–56 (1994).
  45. C. Yao, H. Liu, Y. Zhao, Y. Mi, S. Dong, and Y. Lv, “Analysis of dynamic processes in single-cell electroporation and their effects on parameter selection based on the finite-element model,” IEEE Transactions on Plasma Science 45, 889–900 (2017b).
  46. A. Ivorra, L. M. Mir, and B. Rubinsky, “Electric field redistribution due to conductivity changes during tissue electroporation: Experiments with a simple vegetal model,” in IFMBE Proceedings (Springer Berlin Heidelberg, 2009) pp. 59–62.
  47. S. Orlowski, J. Belehradek, C. Paoletti, and L. M. Mir, “Transient electropermeabilization of cells in culture,” Biochemical Pharmacology 37, 4727–4733 (1988).
  48. M. Rols and J. Teissié, “Electropermeabilization of mammalian cells. quantitative analysis of the phenomenon,” Biophysical Journal 58, 1089–1098 (1990).
  49. F. Mahmood and J. Gehl, “Optimizing clinical performance and geometrical robustness of a new electrode device for intracranial tumor electroporation,” Bioelectrochemistry 81, 10–16 (2011).
  50. N. Boc, I. Edhemovic, B. Kos, M. M. Music, E. Brecelj, B. Trotovsek, M. Bosnjak, M. Djokic, D. Miklavcic, M. Cemazar, and G. Sersa, “Ultrasonographic changes in the liver tumors as indicators of adequate tumor coverage with electric field for effective electrochemotherapy,” Radiology and Oncology 52, 383–391 (2018).
  51. H. Cindric, G. Gasljevic, I. Edhemovic, E. Brecelj, J. Zmuc, M. Cemazar, A. Seliskar, D. Miklavcic, and B. Kos, “Numerical mesoscale tissue model of electrochemotherapy in liver based on histological findings,” Scientific Reports 12 (2022), 10.1038/s41598-022-10426-2.

Summary

We haven't generated a summary for this paper yet.