Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Autonomous Docking Method via Non-linear Model Predictive Control (2312.16629v1)

Published 27 Dec 2023 in cs.RO, cs.SY, and eess.SY

Abstract: This paper presents a proposed method of autonomous control for docking tasks of a single-seat personal mobility vehicle. We proposed a non-linear model predictive control (NMPC) based visual servoing to achieves the desired autonomous docking task. The proposed method is implemented on a four-wheel electric wheelchair platform, with two independent rear driving wheels and two front castor wheels. The NMPC-based visual servoing technique leverages the information extracted from a visual sensor as a real-time feedback for the NMPC to control the motion of the vehicle achieving the desired autonomous docking task. To evaluate the performance of the proposed controller method, a number of experiments both in simulation and in the actual setting. The controller performance is then evaluated based on the controller design requirement. The simulation results on autonomous docking experiments show that the proposed controller has been successfully achieve the desired controller design requirement to generate realtime trajectory for the vehicle performing autonomous docking tasks in several different scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. G. Rigatos, P. Siano, D. Selisteanu, and R. E. Precup, “Nonlinear optimal control of oxygen and carbon dioxide levels in blood,” Intell Ind Syst, vol. 3, no. 2, pp. 61–75, 2017. [Online]. Available: https://doi.org/10.1007/s40903-016-0060-y
  2. G. Wen, S. S. Ge, C. L. P. Chen, F. Tu, and S. Wang, “Adaptive tracking control of surface vessel using optimized backstepping technique.” IEEE Trans Cybern, vol. 49, no. 9, pp. 3420–3431, 2019. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/29994688/
  3. R. P. Saputra, N. Rakicevic, D. Chappell, K. Wang, and P. Kormushev, “Hierarchical decomposed-objective model predictive control for autonomous casualty extraction,” IEEE Access, vol. 9, pp. 39 656–39 679, 2021.
  4. D. Gu and H. Hu, “A stabilizing receding horizon regulator for nonholonomic mobile robots,” IEEE Trans. Robot., vol. 21, no. 5, pp. 1022–1028, 2005.
  5. H. N. Huynh, O. Verlinden, and A. V. Wouwer, “Comparative application of model predictive control strategies to a wheeled mobile robot,” J. Intell. Robot Syst., vol. 87, no. 1, pp. 81–95, 2017.
  6. Z. Li, J. Deng, R. Lu, Y. Xu, J. Bai, and C.-Y. Su, “Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach,” IEEE Trans. Syst. Man Cybern. Syst., vol. 46, no. 6, pp. 740–749, 2015.
  7. S. Yu, Y. Guo, L. Meng, T. Qu, and H. Chen, “MPC for path following problems of wheeled mobile robots,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 247–252, 2018.
  8. N. Hirose, R. Tajima, and K. Sukigara, “MPC policy learning using DNN for human following control without collision,” Adv. Robot, vol. 32, no. 3, pp. 148–159, 2018.
  9. M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian, R. Siegwart, and J. Buchli, “Fast nonlinear model predictive control for unified trajectory optimization and tracking,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016, pp. 1398–1404.
  10. T. T. Ribeiro and A. G. Conceição, “Nonlinear model predictive visual path following control to autonomous mobile robots,” J. Intell. Robot Syst., vol. 95, no. 2, pp. 731–743, 2019.
  11. H. Fukushima, K. Kon, and F. Matsuno, “Model predictive formation control using branch-and-bound compatible with collision avoidance problems,” IEEE Trans. Robot., vol. 29, no. 5, pp. 1308–1317, 2013.
  12. S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marín-Jiménez, “Automatic generation and detection of highly reliable fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–2292, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320314000235
  13. J. Wubben, F. Fabra, C. T. Calafate, T. Krzeszowski, J. M. Marquez-Barja, J.-C. Cano, and P. Manzoni, “Accurate landing of unmanned aerial vehicles using ground pattern recognition,” Electronics, vol. 8, no. 12, p. 1532, 2019.
  14. V. M. Gonçalves, R. McLaughlin, and G. A. Pereira, “Precise landing of autonomous aerial vehicles using vector fields,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4337–4344, 2020.
  15. F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer, “Speeded up detection of squared fiducial markers,” Image and vision Computing, vol. 76, pp. 38–47, 2018.
  16. V. R. Miranda, A. M. Rezende, T. L. Rocha, H. Azpúrua, L. C. Pimenta, and G. M. Freitas, “Autonomous navigation system for a delivery drone,” Journal of Control, Automation and Electrical Systems, vol. 33, pp. 141–155, 2022.
  17. Ø. Volden, A. Stahl, and T. I. Fossen, “Vision-based positioning system for auto-docking of unmanned surface vehicles (usvs),” International Journal of Intelligent Robotics and Applications, vol. 6, no. 1, pp. 86–103, 2022.
  18. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Math. Prog. Comp., vol. 11, pp. 1–36, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.