Solutions by quadratures of complex Bernoulli differential equations and their quantum deformation (2312.16586v1)
Abstract: It is shown that the complex Bernoulli differential equations admitting the supplementary structure of a Lie-Hamilton system related to the book algebra $\mathfrak{b}_2$ can always be solved by quadratures, providing an explicit solution of the equations. In addition, considering the quantum deformation of Bernoulli equations, their canonical form is obtained and an exact solution by quadratures is deduced as well. It is further shown that the approximations of $k{th}$-order in the deformation parameter from the quantum deformation are also integrable by quadratures, although an explicit solution cannot be obtained in general. Finally, the multidimensional quantum deformation of the book Lie-Hamilton systems is studied, showing that, in contrast to the multidimensional analogue of the undeformed system, the resulting system is coupled in a non-trivial form.
- J. M. Page. Ordinary Differential Equations, with an Introduction to Lie’s Theory of Groups of One Parameter. (London: Macmillan & Co.) 1897.
- P. Painlevé. Leçons sur la théorie analytique des équations différentielles professées à Stockholm. (Paris: Hermann) 1897.
- J. Gray. Change and Variations: A History of Differential Equations to 1900. (New York: Springer) 2021.
- V. I. Arnol’d. Geometrical Methods in the Theory of Ordinary Differential Equations. (New York: Springer) 1983.
- doi:10.1088/0305-4470/34/14/308
- V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan. On the complete integrability and linearization of nonlinear ordinary differential equations. III. Coupled first-order equations. Proc. R. Soc. A 465 (2009) 585–608. doi:10.1098/rspa.2008.0239
- S. Lie. Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. (Leipzig: B. G. Teubner) 1891.
- L. E. Dickson. Differential equations from the group standpoint. Annals Math. 25 (1924) 287–378. doi:10.2307/1967773
- E. L. Ince. Ordinary Differential Equations. (New York: Dover Publications Inc.) 1956.
- M. C. Nucci. The role of symmetries in solving differential equations. Math. Comput. Modelling 25 (1997) 181–193. doi:10.1016/S0895-7177(97)00068-X
- M. Lakshmanan and S. Rajasekar. Nonlinear Dynamics. Integrability, Chaos and Patterns. (Berlin: Springer) 2003.
- S. Lie and G. Scheffers. Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen. (Leipzig: Teubner) 1883.
- E. Vessiot. Sur les systèmes d’équations différentielles du premier ordre qui ont des systèmes fondamentaux d’intégrales. Annales Fac. Sci. Toulouse 8 (1894) H1–H33.
- J. Wei and E. Norman. Lie algebraic solution of linear differential equations. J. Math. Phys. 4 (1963) 575–581. doi:10.1063/1.1703993
- J. L. Reid and G. L. Strobel. The nonlinear superposition theorem of Lie and Abel’s differential equations. Lett. Nuovo Cimento 38 (1983) 448–452. doi:10.1007/BF02789861
- S. Shnider and P. Winternitz. Classification of systems of nonlinear ordinary differential equations with superposition principles. J. Math. Phys. 25 (1984) 3155–3165. doi:10.1063/1.526085
- T. C. Bountis, V. Papageorgiou and P. Winternitz. On the integrability of systems of nonlinear ordinary differential equations with superposition principles. J. Math. Phys. 27 (1986) 1215–1224. doi:10.1063/1.527128
- doi:10.1016/S0034-4877(07)80137-6
- J. F. Carineña, J. Grabowski and J. de Lucas. Lie families: theory and applications. J. Phys. A: Math. Theor. 43 (2010) 305201. doi:10.1088/1751-8113/43/30/305201
- A. M. Grundland and J. de Lucas. A Lie systems approach to the Riccati hierarchy and partial differential equations. J. Differ. Equ. 263 (2017) 299–337. doi:10.1016/j.jde.2017.02.038
- H. Żoła̧dek. The method of holomorphic foliations in planar periodic systems: the case of Riccati equations. J. Differ. Equ. 165 (2000) 143–173. doi:10.1006/jdeq.1999.3721
- R. Campoamor-Stursberg. Perturbations of Lagrangian systems based on the preservation of subalgebras of Noether symmetries. Acta Mech. 227 (2016) 1941–1956. doi:10.1007/s00707-016-1621-6
- P. J. Olver. Applications of Lie Groups to Differential Equations. (New York: Springer) 1985.
- P. G. L. Leach. Equivalence classes of second-order ordinary differential equations with only a three-dimensional Lie algebra of point symmetries and linearisation. J. Math. Anal. Appl. 284 (2003) 31–48. doi:10.1016/S0022-247X(03)00147-1
- J. de Lucas and C. Sardón. A Guide to Lie Systems with Compatible Geometric Structures. (Singapore: World Scientific) 2020. doi:10.1142/q02080
- doi:10.1088/1751-8121/aaa090
- R. Campoamor-Stursberg, E. Fernández-Saiz and F. J. Herranz. Exact solutions and superposition rules for Hamiltonian systems generalizing time-dependent SIS epidemic models with stochastic fluctuations. AIMS Math. 8 (2023) 24025–24052. doi:10.3934/math.20231225
- M. S. Sweedler. Hopf Algebras. (New York: W. A. Benjamin Inc.) 1969.
- V. Chari and A. Pressley. A Guide to Quantum Groups. (Cambridge: Cambridge University Press) 1994.
- A. González López, N. Kamran and P. J. Olver. Lie algebras of vector fields in the real plane. Proc. London Math. Soc. 64 (1992) 339–368. doi:10.1112/plms/s3-64.2.339
- H. A. Buchdahl. A relativistic fluid sphere resembling the Emden polytrope of index 5. Astrophys. J. 140 (1964) 1512–1516. doi:10.1086/148055
- V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan. On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations. Proc. R. Soc. A 461 (2005) 2451–2477. doi:10.1098/rspa.2005.1465
- H. J. Sussmann. Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc. 180 (1973) 171–188. doi:10.2307/1996660
- P. Stefan. Accessible sets, orbits and foliations with singularities. Proc. London Math. Soc. 29 (1974) 699–713. doi:10.1112/plms/s3-29.4.699
- H. T. Davis. Introduction to Nonlinear Differential and Integral Equations. (New York: Dover) 1962.
- W. Hauser and W. Burau. Integrale algebraischer Funktionen und ebene algebraische Kurven. (Berlin: VEB Deutscher Verlag der Wissenschaften) 1962.
- E. T. Whittaker and G. N. Watson. A Course in Modern Analysis. (Cambridge: Cambridge Univ. Press) 1963.
- J. C. Butcher. Numerical Methods for Ordinary Differential Equations. (New York: John Wiley & Sons) 2003.
- R. Campoamor-Stursberg. Low dimensional Vessiot-Guldberg-Lie algebras of second-order ordinary differential equations. Symmetry 8 (2016) 15. doi:10.3390/sym8030015