Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solutions by quadratures of complex Bernoulli differential equations and their quantum deformation (2312.16586v1)

Published 27 Dec 2023 in math-ph, math.DS, math.MP, and nlin.SI

Abstract: It is shown that the complex Bernoulli differential equations admitting the supplementary structure of a Lie-Hamilton system related to the book algebra $\mathfrak{b}_2$ can always be solved by quadratures, providing an explicit solution of the equations. In addition, considering the quantum deformation of Bernoulli equations, their canonical form is obtained and an exact solution by quadratures is deduced as well. It is further shown that the approximations of $k{th}$-order in the deformation parameter from the quantum deformation are also integrable by quadratures, although an explicit solution cannot be obtained in general. Finally, the multidimensional quantum deformation of the book Lie-Hamilton systems is studied, showing that, in contrast to the multidimensional analogue of the undeformed system, the resulting system is coupled in a non-trivial form.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. J. M. Page. Ordinary Differential Equations, with an Introduction to Lie’s Theory of Groups of One Parameter. (London: Macmillan & Co.) 1897.
  2. P. Painlevé. Leçons sur la théorie analytique des équations différentielles professées à Stockholm. (Paris: Hermann) 1897.
  3. J. Gray. Change and Variations: A History of Differential Equations to 1900. (New York: Springer) 2021.
  4. V. I. Arnol’d. Geometrical Methods in the Theory of Ordinary Differential Equations. (New York: Springer) 1983.
  5. doi:10.1088/0305-4470/34/14/308
  6. V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan. On the complete integrability and linearization of nonlinear ordinary differential equations. III. Coupled first-order equations. Proc. R. Soc. A 465 (2009) 585–608. doi:10.1098/rspa.2008.0239
  7. S. Lie. Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. (Leipzig: B. G. Teubner) 1891.
  8. L. E. Dickson. Differential equations from the group standpoint. Annals Math. 25 (1924) 287–378. doi:10.2307/1967773
  9. E. L. Ince. Ordinary Differential Equations. (New York: Dover Publications Inc.) 1956.
  10. M. C. Nucci. The role of symmetries in solving differential equations. Math. Comput. Modelling 25 (1997) 181–193. doi:10.1016/S0895-7177(97)00068-X
  11. M. Lakshmanan and S. Rajasekar. Nonlinear Dynamics. Integrability, Chaos and Patterns. (Berlin: Springer) 2003.
  12. S. Lie and G. Scheffers. Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen. (Leipzig: Teubner) 1883.
  13. E. Vessiot. Sur les systèmes d’équations différentielles du premier ordre qui ont des systèmes fondamentaux d’intégrales. Annales Fac. Sci. Toulouse 8 (1894) H1–H33.
  14. J. Wei and E. Norman. Lie algebraic solution of linear differential equations. J. Math. Phys. 4 (1963) 575–581. doi:10.1063/1.1703993
  15. J. L. Reid and G. L. Strobel. The nonlinear superposition theorem of Lie and Abel’s differential equations. Lett. Nuovo Cimento 38 (1983) 448–452. doi:10.1007/BF02789861
  16. S. Shnider and P. Winternitz. Classification of systems of nonlinear ordinary differential equations with superposition principles. J. Math. Phys. 25 (1984) 3155–3165. doi:10.1063/1.526085
  17. T. C. Bountis, V. Papageorgiou and P. Winternitz. On the integrability of systems of nonlinear ordinary differential equations with superposition principles. J. Math. Phys. 27 (1986) 1215–1224. doi:10.1063/1.527128
  18. doi:10.1016/S0034-4877(07)80137-6
  19. J. F. Carineña, J. Grabowski and J. de Lucas. Lie families: theory and applications. J. Phys. A: Math. Theor. 43 (2010) 305201. doi:10.1088/1751-8113/43/30/305201
  20. A. M. Grundland and J. de Lucas. A Lie systems approach to the Riccati hierarchy and partial differential equations. J. Differ. Equ. 263 (2017) 299–337. doi:10.1016/j.jde.2017.02.038
  21. H. Żoła̧dek. The method of holomorphic foliations in planar periodic systems: the case of Riccati equations. J. Differ. Equ. 165 (2000) 143–173. doi:10.1006/jdeq.1999.3721
  22. R. Campoamor-Stursberg. Perturbations of Lagrangian systems based on the preservation of subalgebras of Noether symmetries. Acta Mech. 227 (2016) 1941–1956. doi:10.1007/s00707-016-1621-6
  23. P. J. Olver. Applications of Lie Groups to Differential Equations. (New York: Springer) 1985.
  24. P. G. L. Leach. Equivalence classes of second-order ordinary differential equations with only a three-dimensional Lie algebra of point symmetries and linearisation. J. Math. Anal. Appl. 284 (2003) 31–48. doi:10.1016/S0022-247X(03)00147-1
  25. J. de Lucas and C. Sardón. A Guide to Lie Systems with Compatible Geometric Structures. (Singapore: World Scientific) 2020. doi:10.1142/q02080
  26. doi:10.1088/1751-8121/aaa090
  27. R. Campoamor-Stursberg, E. Fernández-Saiz and F. J. Herranz. Exact solutions and superposition rules for Hamiltonian systems generalizing time-dependent SIS epidemic models with stochastic fluctuations. AIMS Math. 8 (2023) 24025–24052. doi:10.3934/math.20231225
  28. M. S.  Sweedler. Hopf Algebras. (New York: W. A. Benjamin Inc.) 1969.
  29. V. Chari and A. Pressley. A Guide to Quantum Groups. (Cambridge: Cambridge University Press) 1994.
  30. A. González López, N. Kamran and P. J. Olver. Lie algebras of vector fields in the real plane. Proc. London Math. Soc. 64 (1992) 339–368. doi:10.1112/plms/s3-64.2.339
  31. H. A. Buchdahl. A relativistic fluid sphere resembling the Emden polytrope of index 5. Astrophys. J. 140 (1964) 1512–1516. doi:10.1086/148055
  32. V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan. On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations. Proc. R. Soc. A 461 (2005) 2451–2477. doi:10.1098/rspa.2005.1465
  33. H. J. Sussmann. Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc. 180 (1973) 171–188. doi:10.2307/1996660
  34. P. Stefan. Accessible sets, orbits and foliations with singularities. Proc. London Math. Soc. 29 (1974) 699–713. doi:10.1112/plms/s3-29.4.699
  35. H. T. Davis. Introduction to Nonlinear Differential and Integral Equations. (New York: Dover) 1962.
  36. W. Hauser and W. Burau. Integrale algebraischer Funktionen und ebene algebraische Kurven. (Berlin: VEB Deutscher Verlag der Wissenschaften) 1962.
  37. E. T. Whittaker and G. N. Watson. A Course in Modern Analysis. (Cambridge: Cambridge Univ. Press) 1963.
  38. J. C. Butcher. Numerical Methods for Ordinary Differential Equations. (New York: John Wiley & Sons) 2003.
  39. R. Campoamor-Stursberg. Low dimensional Vessiot-Guldberg-Lie algebras of second-order ordinary differential equations. Symmetry 8 (2016) 15. doi:10.3390/sym8030015

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com