Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disorder driven Thouless charge pump in a quasiperiodic chain (2312.16568v1)

Published 27 Dec 2023 in cond-mat.quant-gas, cond-mat.mes-hall, and cond-mat.other

Abstract: Thouless charge pump enables a quantized transport of charge through an adiabatic evolution of the Hamiltonian exhibiting topological phase. While this charge pumping is known to be robust against the presence of weak disorder in the system, it often breaks down with the increase in disorder strength. In this work, however, we show that in a one dimensional Su-Schrieffer-Heeger lattice, a unit cell-wise staggered quasiperiodic disorder favors a quantized charge pump. Moreover, we show that such quantized Thouless charge pump is achieved by following the standard single cycle pumping protocol which usually leads to a breakdown of charge pump in other known models. This unusual property is found to be due to an emergence of a trivial gapped phase from a topological phase as the quasiperiodic disorder is tuned. This emergent gapped to gapped transition also allows us to propose a non-standard pumping scheme where a modulated disorder favors a quantized Thouless charge pump.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
  2. Q. Niu and D. J. Thouless, Journal of Physics A: Mathematical and General 17, 2453 (1984).
  3. M. Kohmoto, Annals of Physics 160, 343 (1985).
  4. R. Citro and M. Aidelsburger, Nature Reviews Physics 5, 87 (2023).
  5. Z. Tao, W. Huang, J. Niu, L. Zhang, Y. Ke, X. Gu, L. Lin, J. Qiu, X. Sun, X. Yang, J. Zhang, J. Zhang, S. Zhao, Y. Zhou, X. Deng, C. Hu, L. Hu, J. Li, Y. Liu, D. Tan, Y. Xu, T. Yan, Y. Chen, C. Lee, Y. Zhong, S. Liu,  and D. Yu, “Interaction-induced topological pumping in a solid-state quantum system,”  (2023), arXiv:2303.04582 .
  6. K. Viebahn, A.-S. Walter, E. Bertok, Z. Zhu, M. Gächter, A. A. Aligia, F. Heidrich-Meisner,  and T. Esslinger, “Interaction-induced charge pumping in a topological many-body system,”  (2023), arXiv:2308.03756 .
  7. Y. Hatsugai and T. Fukui, Phys. Rev. B 94, 041102 (2016).
  8. R. Wang and Z. Song, Phys. Rev. B 100, 184304 (2019).
  9. Y. Kuno and Y. Hatsugai, Phys. Rev. Res. 2, 042024 (2020).
  10. J. Argüello-Luengo, M. J. Mark, F. Ferlaino, M. Lewenstein, L. Barbiero,  and S. Julià-Farré, “Stabilization of hubbard-thouless pumps through nonlocal fermionic repulsion,”  (2023), arXiv:2308.13375 .
  11. J. K. Asbóth, L. Oroszlány,  and A. Pályi, “The su-schrieffer-heeger (ssh) model,” in A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions (Springer International Publishing, Cham, 2016) pp. 1–22.
  12. R. Resta, Rev. Mod. Phys. 66, 899 (1994).
  13. R. Resta, Ferroelectrics 136, 51 (1992).
  14. R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
  15. H. Watanabe and M. Oshikawa, Phys. Rev. X 8, 021065 (2018).
  16. R. Resta, Physical Review Letters 80, 1800–1803 (1998).
  17. M. J. Rice and E. J. Mele, Phys. Rev. Lett. 49, 1455 (1982).
  18. J. K. Asbóth, L. Oroszlány,  and A. Pályi, “Adiabatic charge pumping, rice-mele model,” in A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions (Springer International Publishing, Cham, 2016) pp. 55–68.
  19. R. Bianco and R. Resta, Phys. Rev. B 84, 241106 (2011).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com