Probing Ultralight Tensor Dark Matter with the Stochastic Gravitational-Wave Background from Advanced LIGO and Virgo's First Three Observing Runs (2312.16435v1)
Abstract: Ultralight bosons are attractive dark-matter candidates and appear in various scenarios beyond standard model. They can induce superradiant instabilities around spinning black holes (BHs), extracting the energy and angular momentum from BHs, and then dissipated through monochromatic gravitational radiation, which become promising sources of gravitational wave detectors. In this letter, we focus on massive tensor fields coupled to BHs and compute the stochastic gravitational wave backgrounds emitted by these sources. We then undertake a search for this background within the data from LIGO/Virgo O1$\sim$ O3 runs. Our analysis reveals no discernible evidence of such signals, allowing us to impose stringent limits on the mass range of tensor bosons. Specifically, we exclude the existence of tensor bosons with masses ranging from $4.0\times10{-14}$ to $2.0\times10{-12}$ eV at $95\%$ confidence level.
- B. P. Abbott et al. (LIGO Scientific, Virgo), “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs,” Phys. Rev. X 9, 031040 (2019a), arXiv:1811.12907 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), ‘‘GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run,” Phys. Rev. X 11, 021053 (2021a), arXiv:2010.14527 [gr-qc] .
- Leor Barack et al., “Black holes, gravitational waves and fundamental physics: a roadmap,” Class. Quant. Grav. 36, 143001 (2019), arXiv:1806.05195 [gr-qc] .
- Vishal Baibhav et al., “Probing the nature of black holes: Deep in the mHz gravitational-wave sky,” Exper. Astron. 51, 1385–1416 (2021), arXiv:1908.11390 [astro-ph.HE] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1,” Phys. Rev. D 100, 104036 (2019b), arXiv:1903.04467 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, Virgo), “Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog,” Phys. Rev. D 103, 122002 (2021b), arXiv:2010.14529 [gr-qc] .
- B. S. Sathyaprakash et al., “Extreme Gravity and Fundamental Physics,” (2019), arXiv:1903.09221 [astro-ph.HE] .
- Yang Jiang and Qing-Guo Huang, “Constraining the gravitational-wave spectrum from cosmological first-order phase transitions using data from LIGO-Virgo first three observing runs,” JCAP 06, 053 (2023a), arXiv:2203.11781 [astro-ph.CO] .
- Yang Jiang and Qing-Guo Huang, “Implications for cosmic domain walls from the first three observing runs of LIGO-Virgo,” Phys. Rev. D 106, 103036 (2022), arXiv:2208.00697 [astro-ph.CO] .
- Yang Jiang and Qing-Guo Huang, “Upper limits on the polarized isotropic stochastic gravitational-wave background from advanced LIGO-Virgo’s first three observing runs,” JCAP 02, 026 (2023b), arXiv:2210.09952 [astro-ph.CO] .
- Chen Yuan, Richard Brito, and Vitor Cardoso, “Probing ultralight dark matter with future ground-based gravitational-wave detectors,” Phys. Rev. D 104, 044011 (2021), arXiv:2106.00021 [gr-qc] .
- Chen Yuan, Yang Jiang, and Qing-Guo Huang, “Constraints on an ultralight scalar boson from Advanced LIGO and Advanced Virgo’s first three observing runs using the stochastic gravitational-wave background,” Phys. Rev. D 106, 023020 (2022), arXiv:2204.03482 [astro-ph.CO] .
- Gianfranco Bertone et al., “Gravitational wave probes of dark matter: challenges and opportunities,” SciPost Phys. Core 3, 007 (2020), arXiv:1907.10610 [astro-ph.CO] .
- Richard Brito, Shrobana Ghosh, Enrico Barausse, Emanuele Berti, Vitor Cardoso, Irina Dvorkin, Antoine Klein, and Paolo Pani, “Stochastic and resolvable gravitational waves from ultralight bosons,” Phys. Rev. Lett. 119, 131101 (2017a), arXiv:1706.05097 [gr-qc] .
- Richard Brito, Shrobana Ghosh, Enrico Barausse, Emanuele Berti, Vitor Cardoso, Irina Dvorkin, Antoine Klein, and Paolo Pani, “Gravitational wave searches for ultralight bosons with LIGO and LISA,” Phys. Rev. D 96, 064050 (2017b), arXiv:1706.06311 [gr-qc] .
- Maximiliano Isi, Ling Sun, Richard Brito, and Andrew Melatos, “Directed searches for gravitational waves from ultralight bosons,” Phys. Rev. D 99, 084042 (2019), [Erratum: Phys.Rev.D 102, 049901 (2020)], arXiv:1810.03812 [gr-qc] .
- Leo Tsukada, Thomas Callister, Andrew Matas, and Patrick Meyers, “First search for a stochastic gravitational-wave background from ultralight bosons,” Phys. Rev. D 99, 103015 (2019), arXiv:1812.09622 [astro-ph.HE] .
- Richard Brito, Vitor Cardoso, and Paolo Pani, “Massive spin-2 fields on black hole spacetimes: Instability of the Schwarzschild and Kerr solutions and bounds on the graviton mass,” Phys. Rev. D 88, 023514 (2013), arXiv:1304.6725 [gr-qc] .
- Asimina Arvanitaki, Savas Dimopoulos, Sergei Dubovsky, Nemanja Kaloper, and John March-Russell, “String Axiverse,” Phys. Rev. D 81, 123530 (2010), arXiv:0905.4720 [hep-th] .
- Asimina Arvanitaki and Sergei Dubovsky, “Exploring the String Axiverse with Precision Black Hole Physics,” Phys. Rev. D 83, 044026 (2011), arXiv:1004.3558 [hep-th] .
- Steven Weinberg, “A New Light Boson?” Phys. Rev. Lett. 40, 223–226 (1978).
- R. D. Peccei and Helen R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38, 1440–1443 (1977).
- David J. E. Marsh, “Axion Cosmology,” Phys. Rept. 643, 1–79 (2016), arXiv:1510.07633 [astro-ph.CO] .
- Bob Holdom, “Two U(1)’s and Epsilon Charge Shifts,” Phys. Lett. B 166, 196–198 (1986).
- Jonathan L. Feng, “Dark Matter Candidates from Particle Physics and Methods of Detection,” Ann. Rev. Astron. Astrophys. 48, 495–545 (2010), arXiv:1003.0904 [astro-ph.CO] .
- Richard Brito, Vitor Cardoso, and Paolo Pani, “Superradiance: New Frontiers in Black Hole Physics,” Lect. Notes Phys. 906, pp.1–237 (2015a), arXiv:1501.06570 [gr-qc] .
- Asimina Arvanitaki, Masha Baryakhtar, and Xinlu Huang, “Discovering the QCD Axion with Black Holes and Gravitational Waves,” Phys. Rev. D 91, 084011 (2015), arXiv:1411.2263 [hep-ph] .
- Richard Brito, Vitor Cardoso, and Paolo Pani, “Black holes as particle detectors: evolution of superradiant instabilities,” Class. Quant. Grav. 32, 134001 (2015b), arXiv:1411.0686 [gr-qc] .
- Sam R. Dolan, “Instability of the massive Klein-Gordon field on the Kerr spacetime,” Phys. Rev. D 76, 084001 (2007), arXiv:0705.2880 [gr-qc] .
- William E. East and Frans Pretorius, “Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes,” Phys. Rev. Lett. 119, 041101 (2017), arXiv:1704.04791 [gr-qc] .
- Rong-Zhen Guo, Chen Yuan, and Qing-Guo Huang, “On the interaction between ultralight bosons and quantum-corrected black holes,” JCAP 04, 069 (2023), arXiv:2301.06840 [gr-qc] .
- Rong-Zhen Guo, Chen Yuan, and Qing-Guo Huang, “Near-horizon microstructure and superradiant instabilities of black holes,” Phys. Rev. D 105, 064029 (2022), arXiv:2109.03376 [gr-qc] .
- Nayun Jia, Yin-Da Guo, Gui-Rong Liang, Zhan-Feng Mai, and Xin Zhang, “Superradiant anomaly magnification in evolution of vector bosonic condensates bounded by a Kerr black hole with near-horizon reflection,” (2023), arXiv:2309.05108 [gr-qc] .
- Lihang Zhou, Richard Brito, Zhan-Feng Mai, and Lijing Shao, “Superradiant instabilities of massive bosons around exotic compact objects,” (2023), arXiv:2308.03091 [gr-qc] .
- Vitor Cardoso, Óscar J. C. Dias, Gavin S. Hartnett, Matthew Middleton, Paolo Pani, and Jorge E. Santos, “Constraining the mass of dark photons and axion-like particles through black-hole superradiance,” JCAP 03, 043 (2018), arXiv:1801.01420 [gr-qc] .
- Zhong-Wu Xia, Hao Yang, and Yan-Gang Miao, “Scalar fields around a rotating loop quantum gravity black hole: Waveform, quasi-normal modes and superradiance,” (2023), arXiv:2310.00253 [gr-qc] .
- Enrico Cannizzaro, Laura Sberna, Stephen R. Green, and Stefan Hollands, “Relativistic perturbation theory for black-hole boson clouds,” (2023), arXiv:2309.10021 [gr-qc] .
- Cristiano Palomba et al., “Direct constraints on ultra-light boson mass from searches for continuous gravitational waves,” Phys. Rev. Lett. 123, 171101 (2019), arXiv:1909.08854 [astro-ph.HE] .
- Leo Tsukada, Richard Brito, William E. East, and Nils Siemonsen, “Modeling and searching for a stochastic gravitational-wave background from ultralight vector bosons,” Phys. Rev. D 103, 083005 (2021), arXiv:2011.06995 [astro-ph.HE] .
- Ken K. Y. Ng, Salvatore Vitale, Otto A. Hannuksela, and Tjonnie G. F. Li, “Constraints on Ultralight Scalar Bosons within Black Hole Spin Measurements from the LIGO-Virgo GWTC-2,” Phys. Rev. Lett. 126, 151102 (2021), arXiv:2011.06010 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, Virgo, KAGRA), “All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data,” Phys. Rev. D 105, 102001 (2022), arXiv:2111.15507 [astro-ph.HE] .
- Ling Sun, Richard Brito, and Maximiliano Isi, “Search for ultralight bosons in Cygnus X-1 with Advanced LIGO,” Phys. Rev. D 101, 063020 (2020), [Erratum: Phys.Rev.D 102, 089902 (2020)], arXiv:1909.11267 [gr-qc] .
- Benjamin P. Abbott et al. (LIGO Scientific, Virgo), “Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO’s First Observing Run,” Phys. Rev. Lett. 118, 121101 (2017a), [Erratum: Phys.Rev.Lett. 119, 029901 (2017)], arXiv:1612.02029 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run,” Phys. Rev. D 100, 061101 (2019c), arXiv:1903.02886 [gr-qc] .
- R. Abbott et al. (KAGRA, Virgo, LIGO Scientific), “Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run,” Phys. Rev. D 104, 022004 (2021c), arXiv:2101.12130 [gr-qc] .
- Katsuki Aoki and Shinji Mukohyama, “Massive gravitons as dark matter and gravitational waves,” Phys. Rev. D 94, 024001 (2016), arXiv:1604.06704 [hep-th] .
- Eugeny Babichev, Luca Marzola, Martti Raidal, Angnis Schmidt-May, Federico Urban, Hardi Veermäe, and Mikael von Strauss, “Bigravitational origin of dark matter,” Phys. Rev. D 94, 084055 (2016a), arXiv:1604.08564 [hep-ph] .
- Eugeny Babichev, Luca Marzola, Martti Raidal, Angnis Schmidt-May, Federico Urban, Hardi Veermäe, and Mikael von Strauss, “Heavy spin-2 Dark Matter,” JCAP 09, 016 (2016b), arXiv:1607.03497 [hep-th] .
- Katsuki Aoki and Kei-ichi Maeda, “Condensate of Massive Graviton and Dark Matter,” Phys. Rev. D 97, 044002 (2018), arXiv:1707.05003 [hep-th] .
- Yu-Mei Wu, Zu-Cheng Chen, and Qing-Guo Huang, “Pulsar timing residual induced by ultralight tensor dark matter,” JCAP 09, 021 (2023), arXiv:2305.08091 [hep-ph] .
- Richard Brito, Sara Grillo, and Paolo Pani, “Black Hole Superradiant Instability from Ultralight Spin-2 Fields,” Phys. Rev. Lett. 124, 211101 (2020), arXiv:2002.04055 [gr-qc] .
- William E. East and Nils Siemonsen, ‘‘Instability and backreaction of massive spin-2 fields around black holes,” Phys. Rev. D 108, 124048 (2023), arXiv:2309.05096 [gr-qc] .
- Eugeny Babichev and Alessandro Fabbri, “Instability of black holes in massive gravity,” Class. Quant. Grav. 30, 152001 (2013), arXiv:1304.5992 [gr-qc] .
- Oscar J. C. Dias, Giuseppe Lingetti, Paolo Pani, and Jorge E. Santos, “Black hole superradiant instability for massive spin-2 fields,” Phys. Rev. D 108, L041502 (2023), arXiv:2304.01265 [gr-qc] .
- Giuseppe Ficarra, Paolo Pani, and Helvi Witek, “Impact of multiple modes on the black-hole superradiant instability,” Phys. Rev. D 99, 104019 (2019), arXiv:1812.02758 [gr-qc] .
- Bruce Allen and Joseph D. Romano, “Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities,” Phys. Rev. D 59, 102001 (1999).
- J. J. Condon and A. M. Matthews, “ΛCDMΛCDM\Lambda\text{CDM}roman_Λ CDM cosmology for astronomers,” Publications of the Astronomical Society of the Pacific 130, 073001 (2018).
- Edwin E. Salpeter, “The Luminosity Function and Stellar Evolution.” Astrophys. J. 121, 161 (1955).
- Volker Springel and Lars Hernquist, “The history of star formation in a ΛΛ\Lambdaroman_Λ cold dark matter universe,” Monthly Notices of the Royal Astronomical Society 339, 312–334 (2003), arXiv:astro-ph/0206395 [astro-ph] .
- Daniel Schaerer, “On the Properties of massive population III stars and metal-free stellar populations,” Astron. Astrophys. 382, 28–42 (2002), arXiv:astro-ph/0110697 .
- Chris L. Fryer, Krzysztof Belczynski, Grzegorz Wiktorowicz, Michal Dominik, Vicky Kalogera, and Daniel E. Holz, “Compact Remnant Mass Function: Dependence on the Explosion Mechanism and Metallicity,” Astrophys. J. 749, 91 (2012), arXiv:1110.1726 [astro-ph.SR] .
- Krzysztof Belczynski, Daniel E. Holz, Tomasz Bulik, and Richard O’Shaughnessy, “The first gravitational-wave source from the isolated evolution of two 40-100 Msun stars,” Nature 534, 512 (2016), arXiv:1602.04531 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), “Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog,” Astrophys. J. Lett. 913, L7 (2021d), arXiv:2010.14533 [astro-ph.HE] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “GW150914: Implications for the stochastic gravitational wave background from binary black holes,” Phys. Rev. Lett. 116, 131102 (2016), arXiv:1602.03847 [gr-qc] .
- Benjamin P. Abbott et al. (LIGO Scientific, Virgo), “GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences,” Phys. Rev. Lett. 120, 091101 (2018), arXiv:1710.05837 [gr-qc] .
- Mark A. Scheel, Michael Boyle, Tony Chu, Lawrence E. Kidder, Keith D. Matthews, and Harald P. Pfeiffer, “High-accuracy waveforms for binary black hole inspiral, merger, and ringdown,” Phys. Rev. D 79, 024003 (2009), arXiv:0810.1767 [gr-qc] .
- Enrico Barausse and Luciano Rezzolla, “Predicting the direction of the final spin from the coalescence of two black holes,” Astrophys. J. Lett. 704, L40–L44 (2009), arXiv:0904.2577 [gr-qc] .
- Eric Thrane and Joseph D. Romano, “Sensitivity curves for searches for gravitational-wave backgrounds,” Phys. Rev. D 88, 124032 (2013), arXiv:1310.5300 [astro-ph.IM] .
- Benjamin P Abbott et al. (LIGO Scientific), “Exploring the Sensitivity of Next Generation Gravitational Wave Detectors,” Class. Quant. Grav. 34, 044001 (2017b), arXiv:1607.08697 [astro-ph.IM] .
- Joseph D. Romano and Neil J. Cornish, “Detection methods for stochastic gravitational-wave backgrounds: a unified treatment,” Living Rev. Rel. 20, 2 (2017), arXiv:1608.06889 [gr-qc] .
- William E. East, “Superradiant instability of massive vector fields around spinning black holes in the relativistic regime,” Phys. Rev. D 96, 024004 (2017), arXiv:1705.01544 [gr-qc] .