Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Light-matter interactions in the vacuum of ultra-strongly coupled systems (2312.16287v2)

Published 26 Dec 2023 in quant-ph and cond-mat.mes-hall

Abstract: We theoretically study how the peculiar properties of the vacuum state of an ultra-strongly coupled system can affect basic light-matter interaction processes. In this unconventional electromagnetic environment, an additional emitter no longer couples to the bare cavity photons, but rather to the polariton modes emerging from the ultra-strong coupling. As such, the effective light-matter interaction strength is sensitive to the properties of the distorted vacuum state. Different interpretations of our predictions in terms of modified quantum fluctuations in the vacuum state and of radiative reaction in classical electromagnetism are critically discussed. Whereas our discussion is focused on the experimentally most relevant case of intersubband polaritons in semiconductor devices, our framework is fully general and applies to generic material systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. P. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Elsevier Science, 1994).
  2. H. A. Bethe, The Electromagnetic Shift of Energy Levels, Phys. Rev. 72, 339 (1947) .
  3. P. W. Milonni, Why spontaneous emission? American Journal of Physics 52, 340 (1984) .
  4. E. Burstein and C. Weisbuch, Confined electrons and photons: New physics and applications, Vol. 340 (Springer Science & Business Media, 2012).
  5. G. S. Agarwal, Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity, Phys. Rev. Lett. 53, 1732 (1984) .
  6. K. A. Milton, The Casimir effect: recent controversies and progress, Journal of Physics A: Mathematical and General 37, R209 (2004) .
  7. J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, New York, NY, 1999).
  8. Y. Todorov and C. Sirtori, Intersubband polaritons in the electrical dipole gauge, Phys. Rev. B 85, 045304 (2012) .
  9. Y. Todorov and C. Sirtori, Few-Electron Ultrastrong Light-Matter Coupling in a Quantum LC Circuit, Phys. Rev. X 4, 041031 (2014) .
  10. H. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications II, Semiconductors and semimetals (Academic Press, 2000).
  11. D. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics: An Introduction to Radiation-molecule Interactions, Dover Books on Chemistry Series (Dover Publications, 1998).
  12. M. Załużny, On the Inter-Subband Optical Absorption in Size-Quantized Semiconductor Films, physica status solidi (b) 113, K1 (1982) .
  13. S. De Liberato, Virtual photons in the ground state of a dissipative system, Nature Communications 8, 1465 (2017) .
  14. R. J. Glauber and M. Lewenstein, Quantum optics of dielectric media, Phys. Rev. A 43, 467 (1991) .
  15. P. R. Berman and P. W. Milonni, Microscopic Theory of Modified Spontaneous Emission in a Dielectric, Phys. Rev. Lett. 92, 053601 (2004) .
  16. P. de Vries and A. Lagendijk, Resonant Scattering and Spontaneous Emission in Dielectrics: Microscopic Derivation of Local-Field Effects, Phys. Rev. Lett. 81, 1381 (1998) .
  17. I. R. Senitzky, Radiation-Reaction and Vacuum-Field Effects in Heisenberg-Picture Quantum Electrodynamics, Phys. Rev. Lett. 31, 955 (1973) .
  18. J. J. Hopfield, Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals, Phys. Rev. 112, 1555 (1958) .
  19. G. Arwas and C. Ciuti, Quantum electron transport controlled by cavity vacuum fields, Phys. Rev. B 107, 045425 (2023) .
  20. Y. Todorov, Dipolar quantum electrodynamics of the two-dimensional electron gas, Phys. Rev. B 91, 125409 (2015) .
  21. Y. Todorov, Dipolar quantum electrodynamics theory of the three-dimensional electron gas, Phys. Rev. B 89, 075115 (2014) .
  22. S. De Liberato, Light-Matter Decoupling in the Deep Strong Coupling Regime: The Breakdown of the Purcell Effect, Phys. Rev. Lett. 112, 016401 (2014) .
  23. D. De Bernardis, Relaxation breakdown and resonant tunneling in ultrastrong-coupling cavity QED, Phys. Rev. A 108, 043717 (2023) .
  24. E. Purcell, Berkeley Physics Course. Vol. 2: Electricity and Magnetism (New York, 1965).
  25. M. Bamba and T. Ogawa, Stability of polarizable materials against superradiant phase transition, Phys. Rev. A 90, 063825 (2014) .
  26. C. Ciuti and I. Carusotto, Input-output theory of cavities in the ultrastrong coupling regime: The case of time-independent cavity parameters, Phys. Rev. A 74, 033811 (2006) .
  27. D. De Bernardis and G. M. Andolina, in preparation,  (2023).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.