Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PNL to HOL: from the logic of nominal sets to the logic of higher-order functions (2312.16239v1)

Published 25 Dec 2023 in cs.LO

Abstract: Permissive-Nominal Logic (PNL) extends first-order predicate logic with term-formers that can bind names in their arguments. It takes a semantics in (permissive-)nominal sets. In PNL, the forall-quantifier or lambda-binder are just term-formers satisfying axioms, and their denotation is functions on nominal atoms-abstraction. Then we have higher-order logic (HOL) and its models in ordinary (i.e. Zermelo-Fraenkel) sets; the denotation of forall or lambda is functions on full or partial function spaces. This raises the following question: how are these two models of binding connected? What translation is possible between PNL and HOL, and between nominal sets and functions? We exhibit a translation of PNL into HOL, and from models of PNL to certain models of HOL. It is natural, but also partial: we translate a restricted subsystem of full PNL to HOL. The extra part which does not translate is the symmetry properties of nominal sets with respect to permutations. To use a little nominal jargon: we can translate names and binding, but not their nominal equivariance properties. This seems reasonable since HOL -- and ordinary sets -- are not equivariant. Thus viewed through this translation, PNL and HOL and their models do different things, but they enjoy non-trivial and rich subsystems which are isomorphic.

Citations (9)

Summary

We haven't generated a summary for this paper yet.