Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Industrial Internet of Things Intelligence Empowering Smart Manufacturing: A Literature Review (2312.16174v2)

Published 2 Dec 2023 in cs.AI and cs.CY

Abstract: The fiercely competitive business environment and increasingly personalized customization needs are driving the digital transformation and upgrading of the manufacturing industry. IIoT intelligence, which can provide innovative and efficient solutions for various aspects of the manufacturing value chain, illuminates the path of transformation for the manufacturing industry. It's time to provide a systematic vision of IIoT intelligence. However, existing surveys often focus on specific areas of IIoT intelligence, leading researchers and readers to have biases in their understanding of IIoT intelligence, that is, believing that research in one direction is the most important for the development of IIoT intelligence, while ignoring contributions from other directions. Therefore, this paper provides a comprehensive overview of IIoT intelligence. We first conduct an in-depth analysis of the inevitability of manufacturing transformation and study the successful experiences from the practices of Chinese enterprises. Then we give our definition of IIoT intelligence and demonstrate the value of IIoT intelligence for industries in fucntions, operations, deployments, and application. Afterwards, we propose a hierarchical development architecture for IIoT intelligence, which consists of five layers. The practical values of technical upgrades at each layer are illustrated by a close look on lighthouse factories. Following that, we identify seven kinds of technologies that accelerate the transformation of manufacturing, and clarify their contributions. The ethical implications and environmental impacts of adopting IIoT intelligence in manufacturing are analyzed as well. Finally, we explore the open challenges and development trends from four aspects to inspire future researches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (216)
  1. T. world Bank, “World development indicators: Structure of output,” Website, 2019. [Online]. Available: http://wdi.worldbank.org/table/4.2#
  2. National Science and Technology Council,Networking and Information Technology Research and Development Subcommittee, “The national artificial intelligence research and development strategic paln,” Website, 2016. [Online]. Available: https://www.nitrd.gov/pubs/national_ai_rd_strategic_plan.pdf
  3. The Headquarters for Japan’s Economic Revitalization, “New robot strategy,” Website, 2015. [Online]. Available: https://www.meti.go.jp/english/press/2015/pdf/0123_01b.pdf
  4. Federal Ministry for Economic Affairs and Energy, “Industrial strategy 2030: Guidelines for a german and european industrial policy,” Website, 2019. [Online]. Available: https://www.bmwi.de/Redaktion/EN/Publikationen/Industry/industrial-strategy-2030.pdf?__blob=publicationFile&v=7
  5. Ministry of Industry and Information Technology of the People’s Republic of China, “Made in China 2025,” Website, 2015. [Online]. Available: https://www.miit.gov.cn/zwgk/zcjd/art/2020/art_8f85af6a7785410b85c6acf1a73f357e.html
  6. Huawei, “Qingdao Haier 5G Smart Factory,” Website, 2020. [Online]. Available: https://www.huawei.com/en/events/5g-core-summit-2020/videos/5g-smart-factory
  7. ——, “Midea, China Unicom, and Huawei Jointly Release 5G Converged Positioning Solution,” Website, 2021. [Online]. Available: https://www.huawei.com/en/news/2021/7/midea-chinaunicom-5g-intelligent-manufacturing
  8. T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu, “Edge computing in industrial internet of things: Architecture, advances and challenges,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2462–2488, 2020.
  9. H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial internet of things (iiot): An analysis framework,” Computers in industry, vol. 101, pp. 1–12, 2018.
  10. W. Z. Khan, M. Rehman, H. M. Zangoti, M. K. Afzal, N. Armi, and K. Salah, “Industrial internet of things: Recent advances, enabling technologies and open challenges,” Computers & electrical engineering, vol. 81, p. 106522, 2020.
  11. P. K. Malik, R. Sharma, R. Singh, A. Gehlot, S. C. Satapathy, W. S. Alnumay, D. Pelusi, U. Ghosh, and J. Nayak, “Industrial internet of things and its applications in industry 4.0: State of the art,” Computer Communications, vol. 166, pp. 125–139, 2021.
  12. L. Chettri and R. Bera, “A comprehensive survey on internet of things (iot) toward 5g wireless systems,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16–32, 2020.
  13. A. Mahmood, L. Beltramelli, S. Fakhrul Abedin, S. Zeb, N. I. Mowla, S. A. Hassan, E. Sisinni, and M. Gidlund, “Industrial iot in 5g-and-beyond networks: Vision, architecture, and design trends,” IEEE Transactions on Industrial Informatics, vol. 18, no. 6, pp. 4122–4137, 2022.
  14. N. Finn, “Introduction to time-sensitive networking,” IEEE Communications Standards Magazine, vol. 2, no. 2, pp. 22–28, 2018.
  15. J. L. Messenger, “Time-sensitive networking: An introduction,” IEEE Communications Standards Magazine, vol. 2, no. 2, pp. 29–33, 2018.
  16. J. Farkas, L. L. Bello, and C. Gunther, “Time-sensitive networking standards,” IEEE Communications Standards Magazine, vol. 2, no. 2, pp. 20–21, 2018.
  17. L. L. Bello and W. Steiner, “A perspective on ieee time-sensitive networking for industrial communication and automation systems,” Proceedings of the IEEE, vol. 107, no. 6, pp. 1094–1120, 2019.
  18. R. A. Khalil, N. Saeed, M. Masood, Y. M. Fard, M.-S. Alouini, and T. Y. Al-Naffouri, “Deep learning in the industrial internet of things: Potentials, challenges, and emerging applications,” IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11 016–11 040, 2021.
  19. Y. Wei, T. Hu, T. Zhou, Y. Ye, and W. Luo, “Consistency retention method for cnc machine tool digital twin model,” Journal of Manufacturing Systems, vol. 58, pp. 313–322, 2021.
  20. J.-L. Grégorio, C. Lartigue, F. Thiébaut, and R. Lebrun, “A digital twin-based approach for the management of geometrical deviations during assembly processes,” Journal of Manufacturing Systems, vol. 58, pp. 108–117, 2021.
  21. H. Liu and L. Wang, “Remote human–robot collaboration: A cyber–physical system application for hazard manufacturing environment,” Journal of manufacturing systems, vol. 54, pp. 24–34, 2020.
  22. W. Dauth, S. Findeisen, J. Südekum, and N. Woessner, “German robots-the impact of industrial robots on workers,” 2017.
  23. B. Singh, N. Sellappan, and P. Kumaradhas, “Evolution of industrial robots and their applications,” International Journal of emerging technology and advanced engineering, vol. 3, no. 5, pp. 763–768, 2013.
  24. P. Ambika, “Machine learning and deep learning algorithms on the industrial internet of things (iiot),” Advances in computers, vol. 117, no. 1, pp. 321–338, 2020.
  25. S. De, M. Bermudez-Edo, H. Xu, and Z. Cai, “Deep generative models in the industrial internet of things: a survey,” IEEE Transactions on Industrial Informatics, vol. 18, no. 9, pp. 5728–5737, 2022.
  26. M. Laroui, B. Nour, H. Moungla, M. A. Cherif, H. Afifi, and M. Guizani, “Edge and fog computing for iot: A survey on current research activities & future directions,” Computer Communications, vol. 180, pp. 210–231, 2021.
  27. S. Hamdan, M. Ayyash, and S. Almajali, “Edge-computing architectures for internet of things applications: A survey,” Sensors, vol. 20, no. 22, p. 6441, 2020.
  28. World Economic Forum, McKinsey & Company, “Fourth industrial revolution: Beacons of technology and innovation in manufacturing,” Website, January 2019. [Online]. Available: http://www3.weforum.org/docs/WEF_4IR_Beacons_of_Technology_and_Innovation_in_Manufacturing_report_2019.pdf
  29. ——, “Global lighthouse network: Insights from the forefront of the fourth industrial revolution,” Website, December 2019. [Online]. Available: http://www3.weforum.org/docs/WEF_Global_Lighthouse_Network.pdf
  30. ——, “Global lighthouse network: Shaping the next chapter of the forth industial revolution,” Website, January 2023. [Online]. Available: https://www.weforum.org/publications/global-lighthouse-network-shaping-the-next-chapter-of-the-fourth-industrial-revolution/
  31. ——, “Global lighthouse network: Adopting ai at speed and scale,” Website, December 2023. [Online]. Available: https://www.weforum.org/publications/manufacturing-lighthouses-and-the-path-to-impact-adopting-ai-at-speed-and-scale/
  32. White House, “Executive order on the safe, secure, and trustworthy development and use of artificial intelligence,” Website, October, 2023. [Online]. Available: https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
  33. L. A. Harris and J. Chris, “Highlights of the 2023 executive order on artificial intelligence for congress,” Website, November 2023. [Online]. Available: https://crsreports.congress.gov/product/pdf/R/R47843
  34. European Commission, “A green deal industrial plan for the net-zero age,” Website, February, 2023. [Online]. Available: https://commission.europa.eu/document/download/41514677-9598-4d89-a572-abe21cb037f4_en?filename=COM_2023_62_2_EN_ACT_A%20Green%20Deal%20Industrial%20Plan%20for%20the%20Net-Zero%20Age.pdf
  35. ——, “Commission welcomes political agreement to make clean technology manufacturing in the eu resilient and competitive,” Website, February, 2024. [Online]. Available: https://ec.europa.eu/commission/presscorner/detail/en/ip_24_680
  36. Chinese Government, “China standards 2035,” Website, August 2023. [Online]. Available: https://www.sac.gov.cn/xw/bzhdt/art/2023/art_adaa8006e0d149008617f1b2e07cbc77.html
  37. Global Times, “China releases implementation plan for new industries’ standards,” Website, August 2023. [Online]. Available: https://www.globaltimes.cn/page/202308/1296789.shtml
  38. Foxconn Industrial Internet, EqualOcean and Tencent CLoud, “Smart manufacturing milestones: The lighthouse factories leading digital transformation of chinese manufacturing,” Website, June 2020. [Online]. Available: http://www.d-long.com/eWebEditor/uploadfile/2020072018285832520761.pdf
  39. World Economic Forum, “Platforms and ecosystems: Enabling the digital economy,” Website, February 2019. [Online]. Available: http://www3.weforum.org/docs/WEF_Digital_Platforms_and_Ecosystems_2019.pdf
  40. X. Xu, “From cloud computing to cloud manufacturing,” Robotics and computer-integrated manufacturing, vol. 28, no. 1, pp. 75–86, 2012.
  41. Y. Liu, X. Xu, L. Zhang, L. Wang, and R. Y. Zhong, “Workload-based multi-task scheduling in cloud manufacturing,” Robotics and Computer-integrated manufacturing, vol. 45, pp. 3–20, 2017.
  42. S. A. Bello, L. O. Oyedele, O. O. Akinade, M. Bilal, J. M. D. Delgado, L. A. Akanbi, A. O. Ajayi, and H. A. Owolabi, “Cloud computing in construction industry: Use cases, benefits and challenges,” Automation in Construction, vol. 122, p. 103441, 2021.
  43. B. B. Gupta and M. Quamara, “An overview of internet of things (iot): Architectural aspects, challenges, and protocols,” Concurrency and Computation: Practice and Experience, vol. 32, no. 21, p. e4946, 2020.
  44. IFR, “World robotics 2020,” IFR Press Conference, 24th September 2020. [Online]. Available: https://ifr.org/downloads/press2018/Presentation_WR_2020.pdf
  45. B. He, X. Cao, and Z. Gu, “Kinematics of underactuated robotics for product carbon footprint,” Journal of Cleaner Production, vol. 257, p. 120491, 2020.
  46. J. M. Nilakantan, Z. Li, Q. Tang, and P. Nielsen, “Multi-objective co-operative co-evolutionary algorithm for minimizing carbon footprint and maximizing line efficiency in robotic assembly line systems,” Journal of Cleaner Production, vol. 156, pp. 124–136, 2017.
  47. Z. Pan, J. Polden, N. Larkin, S. Van Duin, and J. Norrish, “Recent progress on programming methods for industrial robots,” Robotics and Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 87–94, 2012.
  48. A. Vysocky and P. Novak, “Human-robot collaboration in industry,” MM Science Journal, vol. 9, no. 2, pp. 903–906, 2016.
  49. V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications,” Mechatronics, vol. 55, pp. 248–266, 2018.
  50. CISILION, “2020 global networking trends report,” Website, 2020. [Online]. Available: https://cdn2.hubspot.net/hubfs/302795/Cisco%20Global%20Networking%20Trends%20Report%202020.pdf?__hsfp=2303363933&__hssc=251652889.2.1632299031680&__hstc=251652889.4a87718e0ddc358f0f8252747dd7b7df.1632299031680.1632299031680.1632299031680.1
  51. A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein, and H. ElBakoury, “Ultra-low latency (ull) networks: The ieee tsn and ietf detnet standards and related 5g ull research,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 88–145, 2018.
  52. ZTE, Deloitte, “White paper on 5g+ict industry trends: Innovation, survival and development,” 2020. [Online]. Available: https://res-www.zte.com.cn/mediares/zte/Files/PDF/white_book/202002210916.pdf?la=zh-CN
  53. S. Haibing and L. Xinjun, “In-depth perspective on mes,” Sept. 13, 2020. [Online]. Available: https://www.vzkoo.com/doc/20022.html?a=4
  54. S. Fang, Y. Yu, C. H. Foh, and K. M. M. Aung, “A loss-free multipathing solution for data center network using software-defined networking approach,” IEEE transactions on magnetics, vol. 49, no. 6, pp. 2723–2730, 2013.
  55. F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and openflow: From concept to implementation,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 2181–2206, 2014.
  56. G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of information-centric networking research,” IEEE communications surveys & tutorials, vol. 16, no. 2, pp. 1024–1049, 2013.
  57. A. V. Vasilakos, Z. Li, G. Simon, and W. You, “Information centric network: Research challenges and opportunities,” Journal of network and computer applications, vol. 52, pp. 1–10, 2015.
  58. M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson, A. Benjebbour, and G. Wunder, “5g: A tutorial overview of standards, trials, challenges, deployment, and practice,” IEEE journal on selected areas in communications, vol. 35, no. 6, pp. 1201–1221, 2017.
  59. M. Agiwal, A. Roy, and N. Saxena, “Next generation 5g wireless networks: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016.
  60. I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing and softwarization: A survey on principles, enabling technologies, and solutions,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2429–2453, 2018.
  61. N. Alliance, “Description of network slicing concept,” NGMN 5G P, vol. 1, no. 1, 2016.
  62. Y. Wang, “White Paper on Industrial Software Development in China,” Website, 2019. [Online]. Available: https://v1.cecdn.yun300.cn/site_1801180113%2F%E4%B8%AD%E5%9B%BD%E5%B7%A5%E4%B8%9A%E8%BD%AF%E4%BB%B6%E5%8F%91%E5%B1%95%E7%99%BD%E7%9A%AE%E4%B9%A6%282019%291565910127066.pdf
  63. D. Wu, J. Terpenny, and D. Schaefer, “Digital design and manufacturing on the cloud: A review of software and services—retracted,” AI EDAM, vol. 31, no. 1, pp. 104–118, 2017.
  64. M. Mora, R. O’Connor, F. Tsui, and J. Marx Gómez, “Design methods for software architectures in the service-oriented computing and cloud paradigms,” Software: Practice and Experience, vol. 48, no. 2, pp. 263–267, 2017.
  65. National Development and Reform Commission, Administration of the CPC Central Committee, “The implementation plan of promoting the action of ”using big-data to empower wisdom in the cloud” for new economic development,” Website, 2020-04-07, https://www.ndrc.gov.cn/xxgk/zcfb/tz/202004/t20200410_1225542_ext.html (accessed 10 September 2021).
  66. DHL Trend Research, “Digital twins in logistics: A dhl perspective on the impact of digital twins on the logistics industry,” Website, 2019, https://www.dhl.com/content/dam/dhl/global/core/documents/pdf/glo-core-digital-twins-in-logistics.pdf (accessed 10 September 2021).
  67. A. Alsumait, A. Seffah, and T. Radhakrishnan, “Use case maps: A roadmap for usability and software integrated specification,” in IFIP World Computer Congress, TC 13.   Springer, 2002, pp. 119–131.
  68. R. J. Buhr, “Use case maps as architectural entities for complex systems,” IEEE Transactions on Software Engineering, vol. 24, no. 12, pp. 1131–1155, 1998.
  69. W. Shen, L. Wang, and Q. Hao, “Agent-based distributed manufacturing process planning and scheduling: a state-of-the-art survey,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 36, no. 4, pp. 563–577, 2006.
  70. P.-T. Chang and C.-H. Chang, “An integrated artificial intelligent computer-aided process planning system,” International Journal of Computer Integrated Manufacturing, vol. 13, no. 6, pp. 483–497, 2000.
  71. J. Chen, P. Han, Y. Zhang, T. You, and P. Zheng, “Scheduling energy consumption-constrained workflows in heterogeneous multi-processor embedded systems,” Journal of Systems Architecture, vol. 142, p. 102938, 2023.
  72. B. W. Niebel, “Mechanized process selection for planning new designs,” ASME paper, vol. 737, 1965.
  73. Y. Yusof and K. Latif, “Survey on computer-aided process planning,” The international journal of advanced manufacturing technology, vol. 75, no. 1-4, pp. 77–89, 2014.
  74. W. J. Thong and M. Ameedeen, “A survey of petri net tools,” in Advanced computer and communication engineering technology.   Springer, 2015, pp. 537–551.
  75. X. Zhang, Q. Lu, and T. Wu, “Petri-net based applications for supply chain management: an overview,” International Journal of Production Research, vol. 49, no. 13, pp. 3939–3961, 2011.
  76. F. G. Quintanilla, O. Cardin, A. L’Anton, and P. Castagna, “A petri net-based methodology to increase flexibility in service-oriented holonic manufacturing systems,” Computers in Industry, vol. 76, pp. 53–68, 2016.
  77. Z. Guo, Y. Zhang, X. Zhao, and X. Song, “A timed colored petri net simulation-based self-adaptive collaboration method for production-logistics systems,” Applied Sciences, vol. 7, no. 3, p. 235, 2017.
  78. R. Kretschmer, A. Pfouga, S. Rulhoff, and J. Stjepandić, “Knowledge-based design for assembly in agile manufacturing by using data mining methods,” Advanced Engineering Informatics, vol. 33, pp. 285–299, 2017.
  79. Y.-L. Tsai, C.-F. You, J.-Y. Lin, and K.-Y. Liu, “Knowledge-based engineering for process planning and die design for automotive panels,” Computer-Aided Design and Applications, vol. 7, no. 1, pp. 75–87, 2010.
  80. B. M. Li, S. Q. Xie, and X. Xu, “Recent development of knowledge-based systems, methods and tools for one-of-a-kind production,” Knowledge-Based Systems, vol. 24, no. 7, pp. 1108–1119, 2011.
  81. M. J. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and practice,” The knowledge engineering review, vol. 10, no. 2, pp. 115–152, 1995.
  82. C. A. Iglesias and M. Garijo, “A survey of agent-oriented methodologies,” in International Workshop on Intelligent Agents V, Agent Theories, Architectures, and Languages, 1998, pp. 317–330.
  83. A. Tveit, “A survey of agent-oriented software engineering,” Journal of Computer Engineering Research, 2001.
  84. J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf, “Evaluation of agent–oriented software methodologies – examination of the gap between modeling and platform,” in International Conference on Agent-Oriented Software Engineering, 2004, pp. 126–141.
  85. J. Tonn and S. Kaiser, “Asgard – a graphical monitoring tool for distributed agent infrastructures,” in Advances in Practical Applications of Agents and Multiagent Systems, International Conference on Practical Applications of Agents and Multiagent Systems, Paams 2010, Salamanca, Spain, 26-28 April, 2010, pp. 163–173.
  86. P. Lin, J. Thangarajah, and M. Winikoff, “Tool support for agent development using the prometheus methodology,” in International Conference on Quality Software, 2005, pp. 383–388.
  87. K. Kravari and N. Bassiliades, “A survey of agent platforms,” Journal of Artificial Societies & Social Simulation, vol. 18, no. 1, 2015.
  88. F. Bergenti, E. Iotti, S. Monica, and A. Poggi, “Agent-oriented model-driven development for jade with the jadel programming language,” Computer Languages Systems & Structures, 2017.
  89. W. Zhang and S. Xie, “Agent technology for collaborative process planning: a review,” The International Journal of Advanced Manufacturing Technology, vol. 32, no. 3, pp. 315–325, 2007.
  90. X. Li, C. Zhang, L. Gao, W. Li, and X. Shao, “An agent-based approach for integrated process planning and scheduling,” Expert Systems with Applications, vol. 37, no. 2, pp. 1256–1264, 2010.
  91. A. Sarkar and D. Šormaz, “Multi-agent system for cloud manufacturing process planning,” Procedia manufacturing, vol. 17, pp. 435–443, 2018.
  92. A. Torreño, E. Onaindia, A. Komenda, and M. Štolba, “Cooperative multi-agent planning: A survey,” ACM Computing Surveys (CSUR), vol. 50, no. 6, pp. 1–32, 2017.
  93. M. Gendreau and J.-Y. Potvin, “Metaheuristics in combinatorial optimization,” Annals of Operations Research, vol. 140, no. 1, pp. 189–213, 2005.
  94. C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, “Hybrid metaheuristics in combinatorial optimization: A survey,” Applied soft computing, vol. 11, no. 6, pp. 4135–4151, 2011.
  95. O. Sigmund and K. Maute, “Topology optimization approaches,” Structural and Multidisciplinary Optimization, vol. 48, no. 6, pp. 1031–1055, 2013.
  96. K.-T. Zuo, L.-P. Chen, Y.-Q. Zhang, and J. Yang, “Manufacturing-and machining-based topology optimization,” The international journal of advanced manufacturing technology, vol. 27, no. 5-6, pp. 531–536, 2006.
  97. J. Liu and Y. Ma, “A survey of manufacturing oriented topology optimization methods,” Advances in Engineering Software, vol. 100, pp. 161–175, 2016.
  98. G. Marck, M. Nemer, J.-L. Harion, S. Russeil, and D. Bougeard, “Topology optimization using the simp method for multiobjective conductive problems,” Numerical Heat Transfer, Part B: Fundamentals, vol. 61, no. 6, pp. 439–470, 2012.
  99. H. Long, Y. Hu, X. Jin, H. Yu, and H. Zhu, “An optimization procedure for spot-welded structures based on simp method,” Computational Materials Science, vol. 117, pp. 602–607, 2016.
  100. T. Yamada, K. Izui, S. Nishiwaki, and A. Takezawa, “A topology optimization method based on the level set method incorporating a fictitious interface energy,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 45-48, pp. 2876–2891, 2010.
  101. M. Zhou, B. S. Lazarov, F. Wang, and O. Sigmund, “Minimum length scale in topology optimization by geometric constraints,” Computer Methods in Applied Mechanics and Engineering, vol. 293, pp. 266–282, 2015.
  102. J. Liu and Y.-S. Ma, “3d level-set topology optimization: a machining feature-based approach,” Structural and Multidisciplinary Optimization, vol. 52, no. 3, pp. 563–582, 2015.
  103. J. Liu, L. Li, and Y. Ma, “Uniform thickness control without pre-specifying the length scale target under the level set topology optimization framework,” Advances in Engineering Software, vol. 115, pp. 204–216, 2018.
  104. A. Diez-Olivan, J. Del Ser, D. Galar, and B. Sierra, “Data fusion and machine learning for industrial prognosis: Trends and perspectives towards industry 4.0,” Information Fusion, vol. 50, pp. 92–111, 2019.
  105. C.-F. J. Kuo and Y. Juang, “A study on the recognition and classification of embroidered textile defects in manufacturing,” Textile Research Journal, vol. 86, no. 4, pp. 393–408, 2016.
  106. C.-W. Chang, T.-M. Chao, J.-T. Horng, C.-F. Lu, and R.-H. Yeh, “Development pattern recognition model for the classification of circuit probe wafer maps on semiconductors,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no. 12, pp. 2089–2097, 2012.
  107. G. W. Vogl, B. A. Weiss, and M. A. Donmez, “Standards for prognostics and health management (phm) techniques within manufacturing operations,” National Institute of Standards and Technology Gaithersburg United States, Tech. Rep., 2014.
  108. I. Shin, J. Lee, J. Y. Lee, K. Jung, D. Kwon, B. D. Youn, H. S. Jang, and J.-H. Choi, “A framework for prognostics and health management applications toward smart manufacturing systems,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 5, no. 4, pp. 535–554, 2018.
  109. A. Kumar, R. Shankar, and L. S. Thakur, “A big data driven sustainable manufacturing framework for condition-based maintenance prediction,” Journal of computational science, vol. 27, pp. 428–439, 2018.
  110. A. Rastegari and M. Bengtsson, “Implementation of condition based maintenance in manufacturing industry-a pilot case study,” in 2014 International Conference on Prognostics and Health Management.   IEEE, 2014, pp. 1–8.
  111. J. Wang, L. Zhang, L. Duan, and R. X. Gao, “A new paradigm of cloud-based predictive maintenance for intelligent manufacturing,” Journal of Intelligent Manufacturing, vol. 28, no. 5, pp. 1125–1137, 2017.
  112. Y. He, C. Gu, Z. Chen, and X. Han, “Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis,” International Journal of Production Research, vol. 55, no. 19, pp. 5841–5862, 2017.
  113. T. Xia, Y. Dong, L. Xiao, S. Du, E. Pan, and L. Xi, “Recent advances in prognostics and health management for advanced manufacturing paradigms,” Reliability Engineering & System Safety, vol. 178, pp. 255–268, 2018.
  114. J. Luo, K. R. Pattipati, L. Qiao, and S. Chigusa, “Model-based prognostic techniques applied to a suspension system,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 38, no. 5, pp. 1156–1168, 2008.
  115. Q. Liu, M. Dong, W. Lv, X. Geng, and Y. Li, “A novel method using adaptive hidden semi-markov model for multi-sensor monitoring equipment health prognosis,” Mechanical Systems and Signal Processing, vol. 64, pp. 217–232, 2015.
  116. A. Soualhi, G. Clerc, H. Razik, F. Guillet et al., “Hidden markov models for the prediction of impending faults,” IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 3271–3281, 2016.
  117. Y. Qian, R. Yan, and R. X. Gao, “A multi-time scale approach to remaining useful life prediction in rolling bearing,” Mechanical Systems and Signal Processing, vol. 83, pp. 549–567, 2017.
  118. Siemens, “Siemens and genera jointly accelerate the transformation to industrial serial applications in the field of additive manufacturing via digital light processing,” Website, November 2022. [Online]. Available: https://press.siemens.com/global/en/pressrelease/siemens-and-genera-jointly-accelerate-transformation-industrial-serial-applications
  119. ——, “Siemens and intel to collaborate on advanced semiconductor manufacturing,” Website, Decmber 2023. [Online]. Available: https://press.siemens.com/global/en/pressrelease/siemens-and-intel-collaborate-advanced-semiconductor-manufacturing
  120. IFR, International Federation of Robotics, “World robotics industrial robots 2020: Chapter 1 reviews definitions and classifications of industrial robots and service robots.” Website. [Online]. Available: https://ifr.org/img/worldrobotics/WR_Industrial_Robots_2020_Chapter_1.pdf
  121. R. W. Liu, Y. Guo, Y. Lu, K. T. Chui, and B. B. Gupta, “Deep network-enabled haze visibility enhancement for visual iot-driven intelligent transportation systems,” IEEE Transactions on Industrial Informatics, vol. 19, no. 2, pp. 1581–1591, 2022.
  122. M. Hashimoto, Y. Domae, and S. Kaneko, “Current status and future trends on robot vision technology,” Journal of Robotics and Mechatronics, vol. 29, no. 2, pp. 275–286, 2017.
  123. Q. Qi and R. Du, “A vision based micro-assembly system for assembling components in mechanical watch movements,” in 2010 International Symposium on Optomechatronic Technologies.   IEEE, 2010, pp. 1–5.
  124. W.-C. Chang, “Robotic assembly of smartphone back shells with eye-in-hand visual servoing,” Robotics and Computer-Integrated Manufacturing, vol. 50, pp. 102–113, 2018.
  125. R. Song, F. Li, T. Fu, and J. Zhao, “A robotic automatic assembly system based on vision,” Applied Sciences, vol. 10, no. 3, p. 1157, 2020.
  126. B. Zhang, H. Yang, and Z. Yin, “A region-based normalized cross correlation algorithm for the vision-based positioning of elongated ic chips,” IEEE Transactions on Semiconductor Manufacturing, vol. 28, no. 3, pp. 345–352, 2015.
  127. F. Zhong, S. He, and B. Li, “Blob analyzation-based template matching algorithm for led chip localization,” The International Journal of Advanced Manufacturing Technology, vol. 93, no. 1, pp. 55–63, 2017.
  128. H.-y. Tam, O. C.-h. Lui, and A. C. Mok, “Robotic polishing of free-form surfaces using scanning paths,” Journal of Materials Processing Technology, vol. 95, no. 1-3, pp. 191–200, 1999.
  129. D. Zhu, X. Feng, X. Xu, Z. Yang, W. Li, S. Yan, and H. Ding, “Robotic grinding of complex components: a step towards efficient and intelligent machining–challenges, solutions, and applications,” Robotics and Computer-Integrated Manufacturing, vol. 65, p. 101908, 2020.
  130. B. Wang, S. J. Hu, L. Sun, and T. Freiheit, “Intelligent welding system technologies: State-of-the-art review and perspectives,” Journal of Manufacturing Systems, vol. 56, pp. 373–391, 2020.
  131. R. Du, Y. Xu, Z. Hou, J. Shu, and S. Chen, “Strong noise image processing for vision-based seam tracking in robotic gas metal arc welding,” The International Journal of Advanced Manufacturing Technology, vol. 101, no. 5, pp. 2135–2149, 2019.
  132. W. Jamrozik and J. Górka, “Assessing mma welding process stability using machine vision-based arc features tracking system,” Sensors, vol. 21, no. 1, 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/1/84
  133. R. W. L. Coutinho and A. Boukerche, “Transfer learning for disruptive 5g-enabled industrial internet of things,” IEEE Transactions on Industrial Informatics, pp. 1–1, 2021.
  134. P. Yu, M. Yang, A. Xiong, Y. Ding, W. Li, X. Qiu, L. Meng, M. Kadoch, and M. Cheriet, “Intelligent-driven green resource allocation for industrial internet of things in 5g heterogeneous networks,” IEEE Transactions on Industrial Informatics, pp. 1–1, 2020.
  135. Huawei, “Bring 5.5g into reality,” Website, 2023. [Online]. Available: https://www-file.huawei.com/-/media/CORP2020/media-center/pdf/5G-advanced-brochure-EN-final.pdf
  136. L. Lo Bello and W. Steiner, “A perspective on ieee time-sensitive networking for industrial communication and automation systems,” Proceedings of the IEEE, vol. 107, no. 6, pp. 1094–1120, 2019.
  137. D. Bruckner, “An introduction to opc ua tsn for industrial communication systems,” Proceedings of the IEEE, vol. 107, no. 6, pp. 1121–1131, 2019.
  138. M. A. Metaal, R. Guillaume, R. Steinmetz, and A. Rizk, “Integrated industrial ethernet networks: Time-sensitive networking over sdn infrastructure for mixed applications,” in 2020 IFIP Networking Conference (Networking), 2020, pp. 803–808.
  139. S. Vitturi, C. Zunino, and T. Sauter, “Industrial communication systems and their future challenges: Next-generation ethernet, iiot, and 5g,” Proceedings of the IEEE, vol. 107, no. 6, pp. 944–961, 2019.
  140. Moxa, “How time-sensitive networking is being applied in real world manufacturing,” Website, March 2023. [Online]. Available: https://iebmedia.com/technology/tsn/how-tsn-as-being-applied-in-real-world-manufacturing/
  141. J. Yu, Y. Song, D. Tang, and J. Dai, “A digital twin approach based on nonparametric bayesian network for complex system health monitoring,” Journal of Manufacturing Systems, vol. 58, pp. 293–304, 2021.
  142. G. Kiswanto et al., “Digital twin approach for tool wear monitoring of micro-milling,” Procedia CIRP, vol. 93, pp. 1532–1537, 2020.
  143. A. Ladj, Z. Wang, O. Meski, F. Belkadi, M. Ritou, and C. Da Cunha, “A knowledge-based digital shadow for machining industry in a digital twin perspective,” Journal of Manufacturing Systems, vol. 58, pp. 168–179, 2021.
  144. B. Deebak and F. Al-Turjman, “Digital-twin assisted: Fault diagnosis using deep transfer learning for machining tool condition,” International Journal of Intelligent Systems, 2021.
  145. S. Liu, Y. Lu, J. Li, D. Song, X. Sun, and J. Bao, “Multi-scale evolution mechanism and knowledge construction of a digital twin mimic model,” Robotics and Computer-Integrated Manufacturing, vol. 71, p. 102123, 2021.
  146. H. Jiang, S. Qin, J. Fu, J. Zhang, and G. Ding, “How to model and implement connections between physical and virtual models for digital twin application,” Journal of Manufacturing Systems, vol. 58, pp. 36–51, 2021.
  147. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.
  148. N. Rusk, “Deep learning,” Nature Methods, vol. 13, no. 1, pp. 35–35, 2016.
  149. Y. Hu, Y. Yao, and W. S. Lee, “A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs,” Knowledge-Based Systems, vol. 204, p. 106244, 2020.
  150. Y. Hu, Z. Zhang, Y. Yao, X. Huyan, X. Zhou, and W. S. Lee, “A bidirectional graph neural network for traveling salesman problems on arbitrary symmetric graphs,” Engineering Applications of Artificial Intelligence, vol. 97, p. 104061, 2021.
  151. Z. Zhang, I. Ng, D. Gong, Y. Liu, E. Abbasnejad, M. Gong, K. Zhang, and J. Q. Shi, “Truncated matrix power iteration for differentiable dag learning,” Advances in Neural Information Processing Systems, vol. 35, pp. 18 390–18 402, 2022.
  152. Q. Sun, Y. Yao, P. Yi, Y. Hu, Z. Yang, G. Yang, and X. Zhou, “Learning controlled and targeted communication with the centralized critic for the multi-agent system,” Applied Intelligence, vol. 53, no. 12, pp. 14 819–14 837, 2023.
  153. J. Chen, T. Li, Y. Zhang, T. You, Y. Lu, P. Tiwari, and N. Kumar, “Global-and-local attention-based reinforcement learning for cooperative behaviour control of multiple uavs,” IEEE Transactions on Vehicular Technology, 2023.
  154. R. Wang, “Edge detection using convolutional neural network,” in International Symposium on Neural Networks.   Springer, 2016, pp. 12–20.
  155. J. He, S. Zhang, M. Yang, Y. Shan, and T. Huang, “Bdcn: Bi-directional cascade network for perceptual edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.
  156. S. Van der Jeught and J. J. Dirckx, “Deep neural networks for single shot structured light profilometry,” Optics express, vol. 27, no. 12, pp. 17 091–17 101, 2019.
  157. F. Wang, C. Wang, and Q. Guan, “Single-shot fringe projection profilometry based on deep learning and computer graphics,” Optics Express, vol. 29, no. 6, pp. 8024–8040, 2021.
  158. Y. Lee, H. Yang, and Z. Yin, “Piv-dcnn: cascaded deep convolutional neural networks for particle image velocimetry,” Experiments in Fluids, vol. 58, no. 12, p. 171, 2017.
  159. Y. Lee and S. Mei, “Diffeomorphic particle image velocimetry,” arXiv preprint arXiv:2108.07438, 2021.
  160. S. Boukhtache, K. Abdelouahab, F. Berry, B. Blaysat, M. Grediac, and F. Sur, “When deep learning meets digital image correlation,” Optics and Lasers in Engineering, vol. 136, p. 106308, 2021.
  161. S. Mei, H. Yang, and Z. Yin, “An unsupervised-learning-based approach for automated defect inspection on textured surfaces,” IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 6, pp. 1266–1277, 2018.
  162. W. Wei, D. Deng, L. Zeng, and C. Zhang, “Real-time implementation of fabric defect detection based on variational automatic encoder with structure similarity,” Journal of Real-Time Image Processing, vol. 18, no. 3, pp. 807–823, 2021.
  163. G. Hu, J. Huang, Q. Wang, J. Li, Z. Xu, and X. Huang, “Unsupervised fabric defect detection based on a deep convolutional generative adversarial network,” Textile Research Journal, vol. 90, no. 3-4, pp. 247–270, 2020.
  164. K. Sohn, C.-L. Li, J. Yoon, M. Jin, and T. Pfister, “Learning and evaluating representations for deep one-class classification,” arXiv preprint arXiv:2011.02578, 2020.
  165. C.-L. Li, K. Sohn, J. Yoon, and T. Pfister, “Cutpaste: Self-supervised learning for anomaly detection and localization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9664–9674.
  166. J. Lehr, J. Philipps, V. N. Hoang, D. von Wrangel, and J. Krüger, “Supervised learning vs. unsupervised learning: A comparison for optical inspection applications in quality control,” in IOP Conference Series: Materials Science and Engineering, vol. 1140, no. 1.   IOP Publishing, 2021, p. 012049.
  167. Y. F. Zheng, R. Pei, and C. Chen, “Strategies for automatic assembly of deformable objects,” in Proceedings. 1991 IEEE International Conference on Robotics and Automation.   IEEE Computer Society, 1991, pp. 2598–2599.
  168. P. Jiménez, “Survey on model-based manipulation planning of deformable objects,” Robotics and computer-integrated manufacturing, vol. 28, no. 2, pp. 154–163, 2012.
  169. D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control: Learning behaviors by latent imagination,” arXiv preprint arXiv:1912.01603, 2019.
  170. K. Chen, Y. Lee, and H. Soh, “Multi-modal mutual information (mummi) training for robust self-supervised deep reinforcement learning,” in IEEE International Conference on Robotics and Automation (ICRA), 2021.
  171. X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking deep reinforcement learning for deformable object manipulation,” arXiv preprint arXiv:2011.07215, 2020.
  172. D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson, “Learning latent dynamics for planning from pixels,” in International Conference on Machine Learning.   PMLR, 2019, pp. 2555–2565.
  173. G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-world reinforcement learning,” arXiv preprint arXiv:1904.12901, 2019.
  174. I. Kostrikov, D. Yarats, and R. Fergus, “Image augmentation is all you need: Regularizing deep reinforcement learning from pixels,” arXiv preprint arXiv:2004.13649, 2020.
  175. J. S. T. S. B. Belousov and G. C. S. T. B. Wibranek, “Architectural assembly with tactile skills: Simulation and optimization,” 2021.
  176. V. C. Coffey, “Machine vision: The eyes of industry 4.0,” Optics and photonics news, vol. 29, no. 7, pp. 42–49, 2018.
  177. H. Kim, A. Handa, R. Benosman, S.-H. Ieng, and A. J. Davison, “Simultaneous mosaicing and tracking with an event camera,” J. Solid State Circ, vol. 43, pp. 566–576, 2008.
  178. T. Taunyazoz, W. Sng, H. H. See, B. Lim, J. Kuan, A. F. Ansari, B. Tee, and H. Soh, “Event-driven visual-tactile sensing and learning for robots,” in Proceedings of Robotics: Science and Systems, July 2020.
  179. Y. Chi, A. Gnanasambandam, V. Koltun, and S. H. Chan, “Dynamic low-light imaging with quanta image sensors,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16.   Springer, 2020, pp. 122–138.
  180. A. Gnanasambandam and S. H. Chan, “Hdr imaging with quanta image sensors: Theoretical limits and optimal reconstruction,” IEEE Transactions on Computational Imaging, vol. 6, pp. 1571–1585, 2020.
  181. J. N. Mait, G. W. Euliss, and R. A. Athale, “Computational imaging,” Advances in Optics and Photonics, vol. 10, no. 2, pp. 409–483, 2018.
  182. T. Van De Looverbosch, M. H. R. Bhuiyan, P. Verboven, M. Dierick, D. Van Loo, J. De Beenbouwer, J. Sijbers, and B. Nicolaï, “Nondestructive internal quality inspection of pear fruit by x-ray ct using machine learning,” Food Control, vol. 113, p. 107170, 2020.
  183. A. Atefi, Y. Ge, S. Pitla, and J. Schnable, “Robotic detection and grasp of maize and sorghum: Stem measurement with contact,” Robotics, vol. 9, no. 3, p. 58, 2020.
  184. H. Zhang and S.-B. Wen, “3d photolithography through light field projections,” Applied optics, vol. 59, no. 27, pp. 8071–8076, 2020.
  185. S. D. Iacono, G. Di Leo, and C. Liguori, “Computational imaging for drill bit wear estimation,” in 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC).   IEEE, 2021, pp. 1–6.
  186. J. Shalf, “The future of computing beyond moore’s law,” Philosophical Transactions of the Royal Society A, vol. 378, no. 2166, p. 20190061, 2020.
  187. C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W. Lampson, D. Sanchez, and T. B. Schardl, “There’s plenty of room at the top: What will drive computer performance after moore’s law?” Science, vol. 368, no. 6495, 2020.
  188. Y. Qin, X. Jin, and Q. Dai, “Gpu-based depth estimation for light field images,” in 2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS).   IEEE, 2017, pp. 640–645.
  189. X. Yu, H. Wang, W.-c. Feng, H. Gong, and G. Cao, “Gpu-based iterative medical ct image reconstructions,” Journal of Signal Processing Systems, vol. 91, no. 3, pp. 321–338, 2019.
  190. Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “Imagenet training in minutes,” in Proceedings of the 47th International Conference on Parallel Processing, 2018, pp. 1–10.
  191. Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel, K. Keutzer, and C.-J. Hsieh, “Large batch optimization for deep learning: Training bert in 76 minutes,” arXiv preprint arXiv:1904.00962, 2019.
  192. M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A comprehensive survey for scheduling techniques in cloud computing,” Journal of Network and Computer Applications, vol. 143, pp. 1–33, 2019.
  193. L. M. Dang, M. J. Piran, D. Han, K. Min, and H. Moon, “A survey on internet of things and cloud computing for healthcare,” Electronics, vol. 8, no. 7, p. 768, 2019.
  194. A. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling techniques in cloud computing: A literature survey,” Future Generation Computer Systems, vol. 91, pp. 407–415, 2019.
  195. A. Katal, S. Dahiya, and T. Choudhury, “Energy efficiency in cloud computing data centers: a survey on software technologies,” Cluster Computing, vol. 26, no. 3, pp. 1845–1875, 2023.
  196. Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in edge computing: A survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2131–2165, 2021.
  197. X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen, “Convergence of edge computing and deep learning: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 869–904, 2020.
  198. F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou, “A survey on edge computing systems and tools,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1537–1562, 2019.
  199. P. Helo, Y. Hao, R. Toshev, and V. Boldosova, “Cloud manufacturing ecosystem analysis and design,” Robotics and Computer-Integrated Manufacturing, vol. 67, p. 102050, 2021.
  200. E. J. Ghomi, A. M. Rahmani, and N. N. Qader, “Cloud manufacturing: challenges, recent advances, open research issues, and future trends,” The International Journal of Advanced Manufacturing Technology, vol. 102, pp. 3613–3639, 2019.
  201. G. Adamson, L. Wang, M. Holm, and P. Moore, “Cloud manufacturing–a critical review of recent development and future trends,” International Journal of Computer Integrated Manufacturing, vol. 30, no. 4-5, pp. 347–380, 2017.
  202. N. Liu, X. Li, and W. Shen, “Multi-granularity resource virtualization and sharing strategies in cloud manufacturing,” Journal of Network and Computer Applications, vol. 46, pp. 72–82, 2014.
  203. H. Bouzary and F. F. Chen, “A classification-based approach for integrated service matching and composition in cloud manufacturing,” Robotics and Computer-Integrated Manufacturing, vol. 66, p. 101989, 2020.
  204. Y. Zhang, G. Zhang, Y. Liu, and D. Hu, “Research on services encapsulation and virtualization access model of machine for cloud manufacturing,” Journal of Intelligent Manufacturing, vol. 28, pp. 1109–1123, 2017.
  205. L.-C. Wang, C.-C. Chen, J.-L. Liu, and P.-C. Chu, “Framework and deployment of a cloud-based advanced planning and scheduling system,” Robotics and Computer-Integrated Manufacturing, vol. 70, p. 102088, 2021.
  206. C. E. Okwudire, X. Lu, G. Kumaravelu, and H. Madhyastha, “A three-tier redundant architecture for safe and reliable cloud-based cnc over public internet networks,” Robotics and Computer-Integrated Manufacturing, vol. 62, p. 101880, 2020.
  207. S. Pundir, M. Wazid, D. P. Singh, A. K. Das, J. J. Rodrigues, and Y. Park, “Designing efficient sinkhole attack detection mechanism in edge-based iot deployment,” Sensors, vol. 20, no. 5, p. 1300, 2020.
  208. A. Cañete, M. Amor, and L. Fuentes, “Energy-efficient deployment of iot applications in edge-based infrastructures: A software product line approach,” IEEE Internet of Things Journal, vol. 8, no. 22, pp. 16 427–16 439, 2020.
  209. ——, “Supporting iot applications deployment on edge-based infrastructures using multi-layer feature models,” Journal of Systems and Software, vol. 183, p. 111086, 2022.
  210. Microsoft, “Stmicroelectronics transforms research and development, manufacturing, supply chain, and internal processes with azure,” Website, April 2023. [Online]. Available: https://customers.microsoft.com/en-us/story/1624918262220581625-stmicroelectronics-manufacturing-azure-teams-power-platform
  211. ——, “Phillips corporation modernizes service operations and increases revenue using dynamics 365 field service,” Website, May 2023. [Online]. Available: https://customers.microsoft.com/en-us/story/1627203871037668308-phillips-corporation-manufacturing-dynamics-365
  212. Y. Hu, Q. Jia, H. Liu, X. Zhou, H. Lai, and R. Xie, “3cl-net: A four-in-one networking paradigm for 6g system,” in 2022 5th International Conference on Hot Information-Centric Networking (HotICN).   IEEE, 2022, pp. 132–136.
  213. Q. Jia, Y. Hu, H. Zhang, K. Peng, P. Chen, R. Xie, and T. Huang, “Research on deterministic computing power network,” Journal on Communications, vol. 43, no. 10, p. 55, 2022. [Online]. Available: https://www.infocomm-journal.com/txxb/EN/abstract/article_172861.shtml
  214. Y. Hu, Q. Jia, Q. Sun, R. Xie, and T. Huang, “Functional architecture to intelligent computing power network,” Computer Science, vol. 49, no. 9, pp. 249–259, 2022. [Online]. Available: https://doi.org/10.11896/jsjkx.220500222
  215. Q. Jia, Y. Hu, X. Zhou, Q. Ma, K. Guo, H. Zhang, R. Xie, T. Huang, and Y. Liu, “Deterministic computing power networking: Architecture, technologies and prospects,” arXiv preprint arXiv:2401.17812, 2024.
  216. World Economic Forum, “Views from the manufacturing front line: Workers’ insights on how to introduce new technology,” Website, Jaunary 2024. [Online]. Available: https://www.weforum.org/publications/views-from-the-manufacturing-front-line-workers-insights-on-how-to-introduce-new-technology/
Citations (18)

Summary

We haven't generated a summary for this paper yet.