Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Option pricing under stochastic volatility on a quantum computer (2312.15871v3)

Published 26 Dec 2023 in quant-ph

Abstract: We develop quantum algorithms for pricing Asian and barrier options under the Heston model, a popular stochastic volatility model, and estimate their costs, in terms of T-count, T-depth and number of logical qubits, on instances under typical market conditions. These algorithms are based on combining well-established numerical methods for stochastic differential equations and quantum amplitude estimation technique. In particular, we empirically show that, despite its simplicity, weak Euler method achieves the same level of accuracy as the better-known strong Euler method in this task. Furthermore, by eliminating the expensive procedure of preparing Gaussian states, the quantum algorithm based on weak Euler scheme achieves drastically better efficiency than the one based on strong Euler scheme. Our resource analysis suggests that option pricing under stochastic volatility is a promising application of quantum computers, and that our algorithms render the hardware requirement for reaching practical quantum advantage in financial applications less stringent than prior art.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. “Quantum computing for finance”. Nature Reviews Physics 5, 450–465 (2023).
  2. “Quantum computational finance: Monte carlo pricing of financial derivatives”. Phys. Rev. A 98, 022321 (2018).
  3. “Option Pricing using Quantum Computers”. Quantum 4, 291 (2020).
  4. “Towards Quantum Advantage in Financial Market Risk using Quantum Gradient Algorithms”. Quantum 6, 770 (2022).
  5. “Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance”. Quantum 5, 481 (2021).
  6. “A Threshold for Quantum Advantage in Derivative Pricing”. Quantum 5, 463 (2021).
  7. “Quantum algorithm for credit valuation adjustments”. New Journal of Physics 24, 023036 (2022).
  8. “A quantum spectral method for simulating stochastic processes, with applications to monte carlo” (2023). arXiv:2303.06719.
  9. “Derivative pricing using quantum signal processing” (2023). arXiv:2307.14310.
  10. Steven Shreve. “Stochastic calculus for finance ii: Continuous-time models”. Volume 11. Springer.  (2004).
  11. Steven Shreve. “Stochastic calculus for finance i: the binomial asset pricing model”. Springer Science & Business Media.  (2005).
  12. “Numerical Solution of Stochastic Differential Equations”. Springer Berlin, Heidelberg.  (1992).
  13. “Quantum amplitude amplification and estimation” (2002).
  14. “The pricing of options and corporate liabilities”. Journal of political economy 81, 637–654 (1973).
  15. Robert C Merton. “Theory of rational option pricing”. The Bell Journal of economics and management sciencePages 141–183 (1973).
  16. Steven L Heston. “A closed-form solution for options with stochastic volatility with applications to bond and currency options”. The review of financial studies 6, 327–343 (1993).
  17. Natalia A Beliaeva et al. “A simple approach to pricing american options under the heston stochastic volatility model”. The Journal of Derivatives 17, 25–43 (2010).
  18. K. J. In’t Hout and S. Foulon. “Adi finite difference schemes for option pricing in the heston model with correlation”. International Journal of Numerical Analysis and Modeling 7, 303–320 (2010).
  19. Elisa Alòs. “A decomposition formula for option prices in the heston model and applications to option pricing approximation”. Finance and Stochastics 16, 403–422 (2012).
  20. “The evaluation of barrier option prices under stochastic volatility”. Computers & Mathematics with Applications 64, 2034–2048 (2012).
  21. “A closed-form pricing formula for european options under the heston model with stochastic interest rate”. Journal of computational and applied mathematics 335, 323–333 (2018).
  22. “Iterative quantum amplitude estimation”. npj Quantum Information 7, 52 (2021).
  23. “Quantum Computation and Quantum Information”. Cambridge University Press. Cambridge, U.K. (2000).
  24. “Universal quantum computation with ideal clifford gates and noisy ancillas”. Phys. Rev. A 71, 022316 (2005).
  25. “Quantum state preparation without coherent arithmetic” (2022). arXiv:2210.14892.
  26. “Quantum algorithm for linear systems of equations”. Phys. Rev. Lett. 103, 150502 (2009).
  27. “Efficient synthesis of universal repeat-until-success quantum circuits”. Phys. Rev. Lett. 114, 080502 (2015).
  28. “Even more efficient quantum computations of chemistry through tensor hypercontraction”. PRX Quantum 2, 030305 (2021).
  29. “Fault-tolerant quantum simulation of materials using bloch orbitals”. PRX Quantum 4, 040303 (2023).
  30. “Quantum computing enhanced computational catalysis”. Phys. Rev. Res. 3, 033055 (2021).
  31. “Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization”. Quantum 3, 208 (2019).
  32. “Quantum Algorithm for Stochastic Optimal Stopping Problems with Applications in Finance”. In François Le Gall and Tomoyuki Morimae, editors, 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022). Volume 232 of Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1–2:24. Dagstuhl, Germany (2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
  33. “Minimizing estimation runtime on noisy quantum computers”. PRX Quantum 2, 010346 (2021).
  34. “Foundations for Bayesian inference with engineered likelihood functions for robust amplitude estimation”. Journal of Mathematical Physics 63, 052202 (2022).
  35. “Low depth algorithms for quantum amplitude estimation”. Quantum 6, 745 (2022).
  36. “Computing Ground State Properties with Early Fault-Tolerant Quantum Computers”. Quantum 6, 761 (2022).
  37. “State Preparation Boosters for Early Fault-Tolerant Quantum Computation”. Quantum 6, 829 (2022).
  38. “Quantum algorithm for ground state energy estimation using circuit depth with exponentially improved dependence on precision”. Quantum 7, 1167 (2023).
  39. “Faster ground state energy estimation on early fault-tolerant quantum computers via rejection sampling” (2023). arXiv:2304.09827.
  40. “Early fault-tolerant quantum computing” (2023). arXiv:2311.14814.
  41. Cody Jones. “Low-overhead constructions for the fault-tolerant toffoli gate”. Phys. Rev. A 87, 022328 (2013).
  42. “Phase-state duality in reversible circuit design”. Phys. Rev. A 104, 052602 (2021).
  43. Craig Gidney. “Halving the cost of quantum addition”. Quantum 2, 74 (2018).
  44. “T-count and qubit optimized quantum circuit design of the non-restoring square root algorithm”. ACM Journal on Emerging Technologies in Computing Systems (JETC) 14, 1–15 (2018).
  45. “Optimizing quantum circuits for arithmetic” (2018). arXiv:1805.12445.
  46. “Resource-Optimized Fermionic Local-Hamiltonian Simulation on a Quantum Computer for Quantum Chemistry”. Quantum 5, 509 (2021).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com