Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curricular and Cyclical Loss for Time Series Learning Strategy (2312.15853v1)

Published 26 Dec 2023 in cs.LG and cs.AI

Abstract: Time series widely exists in real-world applications and many deep learning models have performed well on it. Current research has shown the importance of learning strategy for models, suggesting that the benefit is the order and size of learning samples. However, no effective strategy has been proposed for time series due to its abstract and dynamic construction. Meanwhile, the existing one-shot tasks and continuous tasks for time series necessitate distinct learning processes and mechanisms. No all-purpose approach has been suggested. In this work, we propose a novel Curricular and CyclicaL loss (CRUCIAL) to learn time series for the first time. It is model- and task-agnostic and can be plugged on top of the original loss with no extra procedure. CRUCIAL has two characteristics: It can arrange an easy-to-hard learning order by dynamically determining the sample contribution and modulating the loss amplitude; It can manage a cyclically changed dataset and achieve an adaptive cycle by correlating the loss distribution and the selection probability. We prove that compared with monotonous size, cyclical size can reduce expected error. Experiments on 3 kinds of tasks and 5 real-world datasets show the benefits of CRUCIAL for most deep learning models when learning time series.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Q. Ma, S. Li, and G. W. Cottrell, “Adversarial joint-learning recurrent neural network for incomplete time series classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 4, pp. 1765–1776, 2022.
  2. V. Le Guen and N. Thome, “Deep time series forecasting with shape and temporal criteria,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2022.
  3. C. Sun, S. Hong, J. Wang, X. Dong, F. Han, and H. Li, “A systematic review of deep learning methods for modeling electrocardiograms during sleep,” Physiological Measurement, vol. 43, no. 8, p. 08TR02, 2022.
  4. G. Spadon, S. Hong, B. Brandoli, S. Matwin, J. F. Rodrigues-Jr, and J. Sun, “Pay attention to evolution: Time series forecasting with deep graph-evolution learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 5368–5384, 2022.
  5. C. Sun, M. Song, D. Cai, B. Zhang, S. Hong, and H. Li, “Confidence-guided learning process for continuous classification of time series,” in Proceedings of the 31st ACM International Conference on Information & Knowledge Management, M. A. Hasan and L. Xiong, Eds., 2022, pp. 4525–4529.
  6. G. Hacohen and D. Weinshall, “On the power of curriculum learning in training deep networks,” in Proceedings of International Conference on Machine Learning (ICML), vol. 97, 2019, pp. 2535–2544.
  7. C. Sun, S. Hong, M. Song, and H. Li, “A review of deep learning methods for irregularly sampled medical time series data,” CoRR, vol. abs/2010.12493, 2020.
  8. E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuinness, “Unsupervised label noise modeling and loss correction,” in Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, ser. Proceedings of Machine Learning Research, vol. 97.   PMLR, 2019, pp. 312–321.
  9. C. Sun, S. Hong, M. Song, Y. Chou, Y. Sun, D. Cai, and H. Li, “TE-ESN: time encoding echo state network for prediction based on irregularly sampled time series data,” in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 2021, pp. 3010–3016.
  10. X. Wu, E. Dyer, and B. Neyshabur, “When do curricula work?” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.   OpenReview.net, 2021.
  11. M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying forgetting in classification tasks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 7, pp. 3366–3385, 2022.
  12. W. Chen, J. Wang, Q. L. Fe Ng, S. C. Xu, and L. Ba, “The treatment of severe and multiple injuries in intensive care unit: report of 80 cases,” European Review for Medical & Pharmacological Sciences, vol. 18, no. 24, p. 3797, 2014.
  13. C. Sun, H. Li, M. Song, D. Cai, B. Zhang, and S. Hong, “Continuous diagnosis and prognosis by controlling the update process of deep neural networks,” Patterns, vol. 4, no. 2, p. 100687, 2023.
  14. D. Kiyasseh, T. Zhu, and D. Clifton, “A clinical deep learning framework for continually learning from cardiac signals across diseases, time, modalities, and institutions,” Nature Communications, vol. 12, no. 1, p. 4221, 2021.
  15. D. Novotný, S. Albanie, D. Larlus, and A. Vedaldi, “Self-supervised learning of geometrically stable features through probabilistic introspection,” in 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018.   Computer Vision Foundation / IEEE Computer Society, 2018, pp. 3637–3645.
  16. A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh losses for scene geometry and semantics,” in 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018.   Computer Vision Foundation / IEEE Computer Society, 2018, pp. 7482–7491.
  17. J. Revaud, C. R. de Souza, M. Humenberger, and P. Weinzaepfel, “R2D2: reliable and repeatable detector and descriptor,” in Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 12 405–12 415.
  18. S. Saxena, O. Tuzel, and D. DeCoste, “Data parameters: A new family of parameters for learning a differentiable curriculum,” in Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 11 093–11 103.
  19. T. Castells, P. Weinzaepfel, and J. Revaud, “Superloss: A generic loss for robust curriculum learning,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.
  20. X. Wang, Y. Chen, and W. Zhu, “A survey on curriculum learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 4555–4576, 2022.
  21. Y. Zhou, B. Yang, D. F. Wong, and Y. Wan, “Uncertainty-aware curriculum learning for neural machine translation,” in Proceedings of the Association for Computational Linguistics (ACL), 2020, pp. 6934–6944.
  22. M. P. Kumar, B. Packer, and D. Koller, “Self-paced learning for latent variable models,” in Advances in Neural Information Processing Systems, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, Eds.   Curran Associates, Inc., 2010, pp. 1189–1197.
  23. T. Zhou, S. Wang, and J. A. Bilmes, “Curriculum learning by dynamic instance hardness,” in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.
  24. Z. Xu and A. Tewari, “On the statistical benefits of curriculum learning,” in International Conference on Machine Learning, ICML 2022, vol. 162, 2022, pp. 24 663–24 682.
  25. Y. Liu, Y. Gao, and W. Yin, “An improved analysis of stochastic gradient descent with momentum,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.
  26. B. Axelrod, S. Garg, V. Sharan, and G. Valiant, “Sample amplification: Increasing dataset size even when learning is impossible,” in Proceedings of the 37th International Conference on Machine Learning, ICML 2020, vol. 119, 2020, pp. 442–451.
  27. C. Sun, H. Li, M. Song, D. Cai, B. Zhang, and S. Hong, “Adaptive model training strategy for continuous classification of time series,” Applied Intelligence, 2023.
  28. H. T. Kesgin and M. F. Amasyali, “Cyclical curriculum learning,” CoRR, vol. abs/2202.05531, 2022. [Online]. Available: https://arxiv.org/abs/2202.05531
  29. S. W. D. Center, “The international sunspot number, int. sunspot number monthly bull. online catalogue (1749-2016),” http://www.sidc.be/silso/, 2016.
  30. W. C. Menne, M. and V. R., “Long-term daily and monthly climate records from stations across the contiguous united states.” [Online], 2010.
  31. Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G. Batista, “The ucr time series classification archive,” July 2015, www.cs.ucr.edu/~eamonn/time_series_data/.
  32. M. A. Reyna, C. Josef, S. Seyedi, R. Jeter, S. P. Shashikumar, M. B. Westover, A. Sharma, S. Nemati, and G. D. Clifford, “Early prediction of sepsis from clinical data: the physionet/computing in cardiology challenge 2019,” in 46th Computing in Cardiology, CinC 2019, Singapore, September 8-11, 2019.   IEEE, 2019, pp. 1–4. [Online]. Available: https://doi.org/10.23919/CinC49843.2019.9005736
  33. G. J. e. a. Yan L, Zhang H T, “An interpretable mortality prediction model for covid-19 patients,” Nature, Machine intelligence, vol. 2, 2020.
  34. C. Sun, S. Hong, M. Song, H. Li, and Z. Wang, “Predicting covid-19 disease progression and patient outcomes based on temporal deep learning,” BMC Medical Informatics and Decision Making, vol. 21:45, 2020.
  35. A. Gupta, H. P. Gupta, B. Biswas, and T. Dutta, “Approaches and applications of early classification of time series: A review,” IEEE Trans. Artif. Intell., vol. 1, no. 1, pp. 47–61, 2020.
  36. I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou, “Patient subtyping via time-aware lstm networks,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’17.   ACM, 2017, pp. 65–74.
  37. W. Chen and K. Shi, “Multi-scale attention convolutional neural network for time series classification,” Neural Networks, vol. 136, pp. 126–140, 2021.
  38. H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. Muller, “Deep learning for time series classification: a review,” Data Min. Knowl. Discov., vol. 33, no. 4, pp. 917–963, 2019.
  39. H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond efficient transformer for long sequence time-series forecasting,” in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.   AAAI Press, 2021, pp. 11 106–11 115.
  40. G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, “A transformer-based framework for multivariate time series representation learning,” in KDD ’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021, F. Zhu, B. C. Ooi, and C. Miao, Eds.   ACM, 2021, pp. 2114–2124. [Online]. Available: https://doi.org/10.1145/3447548.3467401
  41. Y. Rizk and M. Awad, “On extreme learning machines in sequential and time series prediction: A non-iterative and approximate training algorithm for recurrent neural networks,” Neurocomputing, vol. 325, pp. 1–19, 2019.
  42. C. W. Seymour, F. Gesten, H. C. Prescott, M. E. Friedrich, T. J. Iwashyna, G. S. Phillips, S. Lemeshow, T. Osborn, K. M. Terry, and M. M. Levy, “Time to treatment and mortality during mandated emergency care for sepsis,” New England Journal of Medicine, vol. 376, no. 23, pp. 2235–2244, 2017.
  43. H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms,” CoRR, vol. abs/1708.07747, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.