Simultaneous Optimal System and Controller Design for Multibody Systems with Joint Friction using Direct Sensitivities (2312.15771v1)
Abstract: Real-world multibody systems are often subject to phenomena like friction, joint clearances, and external events. These phenomena can significantly impact the optimal design of the system and its controller. This work addresses the gradient-based optimization methodology for multibody dynamic systems with joint friction using a direct sensitivity approach for gradient computation. After a thorough review of various friction models developed over the years, the Brown McPhee model has been found to be the most suitable for the study due to its accuracy for dynamic simulation and its compatibility with sensitivity analysis. The methodology supports co-design of the system and its controller, which is especially relevant for applications like robotics and servo-mechanical systems where the actuation and the design are highly dependent on each other. Numerical results are obtained using a new implementation of the MBSVT (Multi-Body Systems at Virginia Tech) software package; MBSVT 2.0 is reprogrammed in Julia for ease of implementation while maintaining high computational efficiency. Three case studies are provided to demonstrate the attractive properties of simultaneous optimal design and control approach for certain applications.
- ACM Trans. Parallel Comput. 7(3) (2020). DOI 10.1145/3399732. URL https://doi.org/10.1145/3399732
- Structural and Multidisciplinary Optimization 63(3), 1367–1383 (2021). DOI 10.1007/s00158-020-02765-3. URL https://doi.org/10.1007/s00158-020-02765-3
- In: Design Automation Conference (2014)
- Mathematical Programming Computation 11(1), 1–36 (2019). DOI 10.1007/s12532-018-0139-4. URL https://doi.org/10.1007/s12532-018-0139-4
- SIAM Journal on Matrix Analysis and Applications 26(4), 962–984 (2005). DOI 10.1137/S0895479803422014. URL https://doi.org/10.1137/S0895479803422014
- Sci. Program. 1(1), 11–29 (1992). DOI 10.1155/1992/717832. URL https://doi.org/10.1155/1992/717832
- Journal of Computational and Nonlinear Dynamics 11(5), 1–6 (2016). DOI 10.1115/1.4033658
- SIAM Journal on Scientific Computing 16(5), 1190–1208 (1995). DOI 10.1137/0916069. URL https://doi.org/10.1137/0916069
- Callejo, A.: Dynamic response optimization of vehicles through efficient multibody formulations and automatic differentiation techniques. Ph.D. thesis, E.T.S.I. Industriales, Universidad Politénica de Madrid (2013)
- Science 307(5712), 1082–1085 (2005). URL http://www.jstor.org/stable/3840156
- Multibody System Dynamics 49(4), 395–420 (2020). DOI 10.1007/s11044-020-09726-0. URL http://dx.doi.org/10.1007/s11044-020-09726-0
- Nonlinear Analysis: Hybrid Systems 31, 19–40 (2019). DOI 10.1016/j.nahs.2018.07.003. URL https://doi.org/10.1016/j.nahs.2018.07.003
- Journal of Computational and Nonlinear Dynamics (2015). DOI 10.1115/1.4026492
- In: M. Sjölund, L. Buffoni, A. Pop, L. Ochel (eds.) 14th International Modelica Conference, Linköping Electronic Conference Proceedings 181, pp. 73–86. Linköping University Electronic Press (2021). URL https://elib.dlr.de/144872/
- Applied Numerical Mathematics 25(1), 41–54 (1997). DOI https://doi.org/10.1016/S0168-9274(97)00050-0. URL https://www.sciencedirect.com/science/article/pii/S0168927497000500
- In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 120–127 (2014). DOI 10.1109/HUMANOIDS.2014.7041347
- Multibody System Dynamics 12(1), 47–74 (2004). DOI 10.1023/B:MUBO.0000042901.74498.3a
- Journal of Computational and Nonlinear Dynamics 1(3), 240–247 (2006). DOI 10.1115/1.2198877. URL https://doi.org/10.1115/1.2198877
- Mechanism and Machine Theory 184, 105305 (2023). DOI https://doi.org/10.1016/j.mechmachtheory.2023.105305. URL https://www.sciencedirect.com/science/article/pii/S0094114X23000782
- Multibody System Dynamics 11(3), 209–233 (2004). DOI 10.1023/B:MUBO.0000029392.21648.bc. URL https://doi.org/10.1023/B:MUBO.0000029392.21648.bc
- arXiv preprint arXiv:2105.03949 (2021)
- In: Program Transformations for ML Workshop at NeurIPS 2019 (2019). URL https://openreview.net/forum?id=rJlPdcY38B
- Society for Industrial and Applied Mathematics (2008). DOI 10.1137/1.9780898717761. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898717761
- Journal of Computational and Applied Mathematics 111(1), 93–111 (1999). DOI https://doi.org/10.1016/S0377-0427(99)00134-X. URL https://www.sciencedirect.com/science/article/pii/S037704279900134X
- Springer Series in Computational Mathematics. Springer Berlin Heidelberg (2010)
- Haug, E.: Computer Aided Kinematics and Dynamics of Mechanical Systems Vol II: Modern Methods. Research Gate (2021)
- Pearson College Div, Massachusetts (1989). DOI 10.1016/0278-6125(92)90050-p
- Haug, E.J.: Simulation of spatial multibody systems with friction. Mechanics Based Design of Structures and Machines 46(3), 347–375 (2018). DOI 10.1080/15397734.2017.1377086. URL https://doi.org/10.1080/15397734.2017.1377086
- Scientific computing (1983)
- ACM Trans. Math. Softw. 31(3), 363–396 (2005). DOI 10.1145/1089014.1089020. URL https://doi.org/10.1145/1089014.1089020
- MIT Press, Cambridge, MA, USA (1992)
- Multibody System Dynamics 30(3), 311–341 (2013). DOI 10.1007/s11044-013-9358-7. URL https://doi.org/10.1007/s11044-013-9358-7
- Mechanism and Machine Theory 46(3), 312–334 (2011). DOI 10.1016/j.mechmachtheory.2010.11.003
- Society for Industrial and Applied Mathematics (2003). DOI 10.1137/1.9780898718898. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898718898
- In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 vol.4 (1995). DOI 10.1109/ICNN.1995.488968
- Chaos: An Interdisciplinary Journal of Nonlinear Science 31(9) (2021). DOI 10.1063/5.0060697
- Journal of Computational Physics 193(2), 357–397 (2004). DOI https://doi.org/10.1016/j.jcp.2003.08.010. URL https://www.sciencedirect.com/science/article/pii/S0021999103004340
- URL https://github.com/JuliaRobotics/RigidBodyDynamics.jl
- Journal of Computational and Applied Mathematics 125(1), 131–145 (2000). DOI https://doi.org/10.1016/S0377-0427(00)00464-7. URL https://www.sciencedirect.com/science/article/pii/S0377042700004647. Numerical Analysis 2000. Vol. VI: Ordinary Differential Equations and Integral Equations
- In: 2021 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–9 (2021). DOI 10.1109/HPEC49654.2021.9622796
- International Journal for Numerical Methods in Engineering 121(22), 5082–5100 (2020). DOI https://doi.org/10.1002/nme.6512. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6512
- Multibody System Dynamics 45(2), 223–244 (2019). DOI 10.1007/s11044-018-09640-6. URL http://dx.doi.org/10.1007/s11044-018-09640-6
- SIAM Journal on Matrix Analysis and Applications 36(1), 90–109 (2015). DOI 10.1137/13093426X. URL https://doi.org/10.1137/13093426X
- The MIT Press (2004). URL https://ideas.repec.org/b/mtp/titles/0262633094.html
- Web (1980). DOI 10.2172/6997568
- Muchnick, S.S..: Advanced compiler design and implementation. Morgan Kaufmann Publishers, San Francisco, Calif. (1997). URL http://catdir.loc.gov/catdir/toc/els032/97013063.html
- Journal of Aircraft 58(1), 53–62 (2021). DOI 10.2514/1.C035678. URL https://doi.org/10.2514/1.C035678
- The Computer Journal 7(4), 308–313 (1965). DOI 10.1093/comjnl/7.4.308. URL https://doi.org/10.1093/comjnl/7.4.308
- Springer, New York, NY, USA (2006)
- Orden, J.C.G.: Analysis of joint clearances in multibody systems. Multibody System Dynamics 13(4), 401–420 (2005). DOI 10.1007/s11044-005-3989-2. URL https://doi.org/10.1007/s11044-005-3989-2
- Multibody System Dynamics 17(4), 321–347 (2007). DOI 10.1007/s11044-007-9047-5
- Petzold, L.: Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM Journal on Scientific and Statistical Computing 4(1), 136–148 (1983). DOI 10.1137/0904010. URL https://doi.org/10.1137/0904010
- Computers & Chemical Engineering 30(10), 1553–1559 (2006). DOI https://doi.org/10.1016/j.compchemeng.2006.05.015. URL https://www.sciencedirect.com/science/article/pii/S0098135406001487. Papers form Chemical Process Control VII
- Petzold, L.R.: Description of DASSL: a differential/algebraic system solver. Web (1982). URL https://www.osti.gov/biblio/5882821
- Mechanism and Machine Theory 166, 104473 (2021). DOI https://doi.org/10.1016/j.mechmachtheory.2021.104473. URL https://www.sciencedirect.com/science/article/pii/S0094114X21002317
- Rackauckas, C.: Direct automatic differentiation of (differential equation) solvers vs analytical adjoints: Which is better? https://www.stochasticlifestyle.com/direct-automatic-differentiation-of-solvers-vs-analytical-adjoints-which-is-better/ (2022)
- Tech. rep., Lawrence Livermore National Laboratory (1993)
- arXiv:1607.07892 [cs.MS] (2016). URL https://arxiv.org/abs/1607.07892
- Springer International Publishing, Cham (2017). DOI 10.1007/978-3-319-55197-5_4. URL https://doi.org/10.1007/978-3-319-55197-5_4
- Mechanics of Structures and Machines 25(3), 379–396 (1997). DOI 10.1080/08905459708905295. URL https://doi.org/10.1080/08905459708905295
- Steinebach, G.: Order reduction of ROW methods for DAEs and method of lines applications. Preprint. Techn. Hochsch., Fachbereich Mathematik (1995). URL https://books.google.com/books?id=6TRDHQAACAAJ
- Steinebach, G.: Construction of rosenbrock–wanner method rodas5p and numerical benchmarks within the julia differential equations package. BIT Numerical Mathematics 63(2), 27 (2023). DOI 10.1007/s10543-023-00967-x. URL https://doi.org/10.1007/s10543-023-00967-x
- Mechanism and Machine Theory 122, 1–57 (2018). DOI 10.1016/j.mechmachtheory.2017.12.002. URL https://doi.org/10.1016/j.mechmachtheory.2017.12.002
- DOI 10.21203/rs.3.rs-2687084/v1. URL https://doi.org/10.21203/rs.3.rs-2687084/v1
- Journal of Computational and Nonlinear Dynamics 17(7), 071006 (2022). DOI 10.1115/1.4054110. URL https://doi.org/10.1115/1.4054110
- In: IUTAM Symposium on Optimal Design and Control of Multibody Systems (2022)
- Mathematical Programming 106(1), 25–57 (2006). DOI 10.1007/s10107-004-0559-y. Copyright: Copyright 2008 Elsevier B.V., All rights reserved.
- Springer Berlin Heidelberg New York (1996)
- IEEE Transactions on Automatic Control 40(3), 419–425 (1995). DOI 10.1109/9.376053
- In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. Volume 7: 2nd Biennial International Conference on Dynamics for Design; 26th International Conference on Design Theory and Methodology, p. V007T05A001 (2014). DOI 10.1115/DETC2014-34084. URL https://doi.org/10.1115/DETC2014-34084
- Computers & Chemical Engineering 34(11), 1737–1749 (2010). DOI https://doi.org/10.1016/j.compchemeng.2009.11.011. URL https://www.sciencedirect.com/science/article/pii/S009813540900283X