Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simultaneous Optimal System and Controller Design for Multibody Systems with Joint Friction using Direct Sensitivities (2312.15771v1)

Published 25 Dec 2023 in eess.SY, cs.CE, cs.NA, cs.SY, math.DS, math.NA, and math.OC

Abstract: Real-world multibody systems are often subject to phenomena like friction, joint clearances, and external events. These phenomena can significantly impact the optimal design of the system and its controller. This work addresses the gradient-based optimization methodology for multibody dynamic systems with joint friction using a direct sensitivity approach for gradient computation. After a thorough review of various friction models developed over the years, the Brown McPhee model has been found to be the most suitable for the study due to its accuracy for dynamic simulation and its compatibility with sensitivity analysis. The methodology supports co-design of the system and its controller, which is especially relevant for applications like robotics and servo-mechanical systems where the actuation and the design are highly dependent on each other. Numerical results are obtained using a new implementation of the MBSVT (Multi-Body Systems at Virginia Tech) software package; MBSVT 2.0 is reprogrammed in Julia for ease of implementation while maintaining high computational efficiency. Three case studies are provided to demonstrate the attractive properties of simultaneous optimal design and control approach for certain applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. ACM Trans. Parallel Comput. 7(3) (2020). DOI 10.1145/3399732. URL https://doi.org/10.1145/3399732
  2. Structural and Multidisciplinary Optimization 63(3), 1367–1383 (2021). DOI 10.1007/s00158-020-02765-3. URL https://doi.org/10.1007/s00158-020-02765-3
  3. In: Design Automation Conference (2014)
  4. Mathematical Programming Computation 11(1), 1–36 (2019). DOI 10.1007/s12532-018-0139-4. URL https://doi.org/10.1007/s12532-018-0139-4
  5. SIAM Journal on Matrix Analysis and Applications 26(4), 962–984 (2005). DOI 10.1137/S0895479803422014. URL https://doi.org/10.1137/S0895479803422014
  6. Sci. Program. 1(1), 11–29 (1992). DOI 10.1155/1992/717832. URL https://doi.org/10.1155/1992/717832
  7. Journal of Computational and Nonlinear Dynamics 11(5), 1–6 (2016). DOI 10.1115/1.4033658
  8. SIAM Journal on Scientific Computing 16(5), 1190–1208 (1995). DOI 10.1137/0916069. URL https://doi.org/10.1137/0916069
  9. Callejo, A.: Dynamic response optimization of vehicles through efficient multibody formulations and automatic differentiation techniques. Ph.D. thesis, E.T.S.I. Industriales, Universidad Politénica de Madrid (2013)
  10. Science 307(5712), 1082–1085 (2005). URL http://www.jstor.org/stable/3840156
  11. Multibody System Dynamics 49(4), 395–420 (2020). DOI 10.1007/s11044-020-09726-0. URL http://dx.doi.org/10.1007/s11044-020-09726-0
  12. Nonlinear Analysis: Hybrid Systems 31, 19–40 (2019). DOI 10.1016/j.nahs.2018.07.003. URL https://doi.org/10.1016/j.nahs.2018.07.003
  13. Journal of Computational and Nonlinear Dynamics (2015). DOI 10.1115/1.4026492
  14. In: M. Sjölund, L. Buffoni, A. Pop, L. Ochel (eds.) 14th International Modelica Conference, Linköping Electronic Conference Proceedings 181, pp. 73–86. Linköping University Electronic Press (2021). URL https://elib.dlr.de/144872/
  15. Applied Numerical Mathematics 25(1), 41–54 (1997). DOI https://doi.org/10.1016/S0168-9274(97)00050-0. URL https://www.sciencedirect.com/science/article/pii/S0168927497000500
  16. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 120–127 (2014). DOI 10.1109/HUMANOIDS.2014.7041347
  17. Multibody System Dynamics 12(1), 47–74 (2004). DOI 10.1023/B:MUBO.0000042901.74498.3a
  18. Journal of Computational and Nonlinear Dynamics 1(3), 240–247 (2006). DOI 10.1115/1.2198877. URL https://doi.org/10.1115/1.2198877
  19. Mechanism and Machine Theory 184, 105305 (2023). DOI https://doi.org/10.1016/j.mechmachtheory.2023.105305. URL https://www.sciencedirect.com/science/article/pii/S0094114X23000782
  20. Multibody System Dynamics 11(3), 209–233 (2004). DOI 10.1023/B:MUBO.0000029392.21648.bc. URL https://doi.org/10.1023/B:MUBO.0000029392.21648.bc
  21. arXiv preprint arXiv:2105.03949 (2021)
  22. In: Program Transformations for ML Workshop at NeurIPS 2019 (2019). URL https://openreview.net/forum?id=rJlPdcY38B
  23. Society for Industrial and Applied Mathematics (2008). DOI 10.1137/1.9780898717761. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898717761
  24. Journal of Computational and Applied Mathematics 111(1), 93–111 (1999). DOI https://doi.org/10.1016/S0377-0427(99)00134-X. URL https://www.sciencedirect.com/science/article/pii/S037704279900134X
  25. Springer Series in Computational Mathematics. Springer Berlin Heidelberg (2010)
  26. Haug, E.: Computer Aided Kinematics and Dynamics of Mechanical Systems Vol II: Modern Methods. Research Gate (2021)
  27. Pearson College Div, Massachusetts (1989). DOI 10.1016/0278-6125(92)90050-p
  28. Haug, E.J.: Simulation of spatial multibody systems with friction. Mechanics Based Design of Structures and Machines 46(3), 347–375 (2018). DOI 10.1080/15397734.2017.1377086. URL https://doi.org/10.1080/15397734.2017.1377086
  29. Scientific computing (1983)
  30. ACM Trans. Math. Softw. 31(3), 363–396 (2005). DOI 10.1145/1089014.1089020. URL https://doi.org/10.1145/1089014.1089020
  31. MIT Press, Cambridge, MA, USA (1992)
  32. Multibody System Dynamics 30(3), 311–341 (2013). DOI 10.1007/s11044-013-9358-7. URL https://doi.org/10.1007/s11044-013-9358-7
  33. Mechanism and Machine Theory 46(3), 312–334 (2011). DOI 10.1016/j.mechmachtheory.2010.11.003
  34. Society for Industrial and Applied Mathematics (2003). DOI 10.1137/1.9780898718898. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898718898
  35. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 vol.4 (1995). DOI 10.1109/ICNN.1995.488968
  36. Chaos: An Interdisciplinary Journal of Nonlinear Science 31(9) (2021). DOI 10.1063/5.0060697
  37. Journal of Computational Physics 193(2), 357–397 (2004). DOI https://doi.org/10.1016/j.jcp.2003.08.010. URL https://www.sciencedirect.com/science/article/pii/S0021999103004340
  38. URL https://github.com/JuliaRobotics/RigidBodyDynamics.jl
  39. Journal of Computational and Applied Mathematics 125(1), 131–145 (2000). DOI https://doi.org/10.1016/S0377-0427(00)00464-7. URL https://www.sciencedirect.com/science/article/pii/S0377042700004647. Numerical Analysis 2000. Vol. VI: Ordinary Differential Equations and Integral Equations
  40. In: 2021 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–9 (2021). DOI 10.1109/HPEC49654.2021.9622796
  41. International Journal for Numerical Methods in Engineering 121(22), 5082–5100 (2020). DOI https://doi.org/10.1002/nme.6512. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6512
  42. Multibody System Dynamics 45(2), 223–244 (2019). DOI 10.1007/s11044-018-09640-6. URL http://dx.doi.org/10.1007/s11044-018-09640-6
  43. SIAM Journal on Matrix Analysis and Applications 36(1), 90–109 (2015). DOI 10.1137/13093426X. URL https://doi.org/10.1137/13093426X
  44. The MIT Press (2004). URL https://ideas.repec.org/b/mtp/titles/0262633094.html
  45. Web (1980). DOI 10.2172/6997568
  46. Muchnick, S.S..: Advanced compiler design and implementation. Morgan Kaufmann Publishers, San Francisco, Calif. (1997). URL http://catdir.loc.gov/catdir/toc/els032/97013063.html
  47. Journal of Aircraft 58(1), 53–62 (2021). DOI 10.2514/1.C035678. URL https://doi.org/10.2514/1.C035678
  48. The Computer Journal 7(4), 308–313 (1965). DOI 10.1093/comjnl/7.4.308. URL https://doi.org/10.1093/comjnl/7.4.308
  49. Springer, New York, NY, USA (2006)
  50. Orden, J.C.G.: Analysis of joint clearances in multibody systems. Multibody System Dynamics 13(4), 401–420 (2005). DOI 10.1007/s11044-005-3989-2. URL https://doi.org/10.1007/s11044-005-3989-2
  51. Multibody System Dynamics 17(4), 321–347 (2007). DOI 10.1007/s11044-007-9047-5
  52. Petzold, L.: Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM Journal on Scientific and Statistical Computing 4(1), 136–148 (1983). DOI 10.1137/0904010. URL https://doi.org/10.1137/0904010
  53. Computers & Chemical Engineering 30(10), 1553–1559 (2006). DOI https://doi.org/10.1016/j.compchemeng.2006.05.015. URL https://www.sciencedirect.com/science/article/pii/S0098135406001487. Papers form Chemical Process Control VII
  54. Petzold, L.R.: Description of DASSL: a differential/algebraic system solver. Web (1982). URL https://www.osti.gov/biblio/5882821
  55. Mechanism and Machine Theory 166, 104473 (2021). DOI https://doi.org/10.1016/j.mechmachtheory.2021.104473. URL https://www.sciencedirect.com/science/article/pii/S0094114X21002317
  56. Rackauckas, C.: Direct automatic differentiation of (differential equation) solvers vs analytical adjoints: Which is better? https://www.stochasticlifestyle.com/direct-automatic-differentiation-of-solvers-vs-analytical-adjoints-which-is-better/ (2022)
  57. Tech. rep., Lawrence Livermore National Laboratory (1993)
  58. arXiv:1607.07892 [cs.MS] (2016). URL https://arxiv.org/abs/1607.07892
  59. Springer International Publishing, Cham (2017). DOI 10.1007/978-3-319-55197-5_4. URL https://doi.org/10.1007/978-3-319-55197-5_4
  60. Mechanics of Structures and Machines 25(3), 379–396 (1997). DOI 10.1080/08905459708905295. URL https://doi.org/10.1080/08905459708905295
  61. Steinebach, G.: Order reduction of ROW methods for DAEs and method of lines applications. Preprint. Techn. Hochsch., Fachbereich Mathematik (1995). URL https://books.google.com/books?id=6TRDHQAACAAJ
  62. Steinebach, G.: Construction of rosenbrock–wanner method rodas5p and numerical benchmarks within the julia differential equations package. BIT Numerical Mathematics 63(2), 27 (2023). DOI 10.1007/s10543-023-00967-x. URL https://doi.org/10.1007/s10543-023-00967-x
  63. Mechanism and Machine Theory 122, 1–57 (2018). DOI 10.1016/j.mechmachtheory.2017.12.002. URL https://doi.org/10.1016/j.mechmachtheory.2017.12.002
  64. DOI 10.21203/rs.3.rs-2687084/v1. URL https://doi.org/10.21203/rs.3.rs-2687084/v1
  65. Journal of Computational and Nonlinear Dynamics 17(7), 071006 (2022). DOI 10.1115/1.4054110. URL https://doi.org/10.1115/1.4054110
  66. In: IUTAM Symposium on Optimal Design and Control of Multibody Systems (2022)
  67. Mathematical Programming 106(1), 25–57 (2006). DOI 10.1007/s10107-004-0559-y. Copyright: Copyright 2008 Elsevier B.V., All rights reserved.
  68. Springer Berlin Heidelberg New York (1996)
  69. IEEE Transactions on Automatic Control 40(3), 419–425 (1995). DOI 10.1109/9.376053
  70. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. Volume 7: 2nd Biennial International Conference on Dynamics for Design; 26th International Conference on Design Theory and Methodology, p. V007T05A001 (2014). DOI 10.1115/DETC2014-34084. URL https://doi.org/10.1115/DETC2014-34084
  71. Computers & Chemical Engineering 34(11), 1737–1749 (2010). DOI https://doi.org/10.1016/j.compchemeng.2009.11.011. URL https://www.sciencedirect.com/science/article/pii/S009813540900283X
Citations (1)

Summary

We haven't generated a summary for this paper yet.