The hidden Lorentz Covariance of Quantum Mechanics (2312.15750v1)
Abstract: This paper introduces a systematic algorithm for deriving a new unitary representation of the Lorentz algebra ($so(1,3)$) and an irreducible unitary representation of the extended (anti) de-Sitter algebra ($so(2,4)$) on $\mathcal{L}{2}(\mathcal{R}{3},\frac{1}{r})$. This representation is equivalent to a representation on $\mathcal{L}{2}(\mathcal{R}{3})$, and the corresponding similarity transformation is identified. An explicit representation in terms of differential operators is given, and it is shown that the inner product is Lorentz invariant. Ensuring Lorentz covariance demands a modification of the Heisenberg algebra, recognized as a phase space algebra at the interface of gravitational and quantum realms (IGQR), which we consider subordinate to Lorentz covariance. It is also demonstrated that time evolution can be cast in a manifestly covariant form. Each mass sector of the Hilbert space carries a representation of the Lorentz algebra, and the (anti) de-Sitter algebra on each mass sector contracts to the Poincare algebra in the flat configuration and momentum space limits. Finally, we show that three-dimensional fuzzy space also carries a unitary representation of these algebras, algebraically equivalent to the $\mathcal{L}{2}(\mathcal{R}{3},\frac{1}{r})$ representation but not necessarily equivalent as representations. Several outstanding issues are identified for future exploration.
- Leggett A 2002 J. Phys. Condens. Matter 14 R415
- IB Pittaway and FG Scholtz, “Quantum interference on the non-commutative plane and the quantum-to-classical transition”, J.Phys.A 56 (2023) 16, 165303
- D Trinchero and FG Scholtz, “Pinhole interference in three-dimensional fuzzy space” Annals Phys. 450 (2023) 169224
- C. Marletto and V. Vedral. Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett. 119,240402 (2017).
- F. Giacomini and Č. Brukner. Quantum superposition of spacetimes obeys Einstein’s equivalence principle. AVS Quantum Sci. 4, 015601 (2022)
- R. Loll, G. Fabiano, D. Frattulillo, and F. Wagner, “Quantum Gravity in 30 Questions,” Proc. Corfu Summer Inst. 2021 ”School Work. Elem. Part. Phys. Gravity” — PoS(CORFU2021) (Jun, 2022) 316, arXiv:2206.0676.
- A. Connes, “Noncommutative geometry and the standard model with neutrino mixing,” JHEP 11 (2006) 081, arXiv:hep-th/0608226.
- M. Bronstein, “Quantum theory of weak gravitational fields,” Gen. Rel. Grav. 44 (2012) 267–2
- M. Chaichian, P. Presnajder and A. Tureanu, “New Concept of Relativistic Invariance in NC Space-Time: Twisted Poincare Symmetry and Its Implications” Phys. Rev. Lett. 94, 151602 (2005)
- S. Mignemi, “Doubly special relativity in (anti) (anti) de Sitter spacetime,” Annalen Phys. 522 (2010) 924.
- S. Mignemi, “The Snyder–(anti) (anti) de Sitter model from six dimensions,” Class. Quant. Grav. 26 (2009) 245020.
- G. Amelino-Camelia and V. Astuti, “Theory and phenomenology of relativistic corrections to the Heisenberg principle,” arXiv:2209.04350
- A. Ballesteros, N.R. Bruno and F.J. Herranz: Phys. Lett. B 574 (2003) 276.
- G. Mack: All Unnitary Ray Representations of the Conformal Group SU(2, 2) with Positive Energy. Commun. math. Phys. 55 (1-28) 1977
- Mendes R V 1994 Deformations, stable theories and fundamental constants J. Phys. A 27 8091
- Chryssomalakos C. 2001. Stability of Lie superalgebras and branes Mod. Phys. Lett. A 16:197
- E. Inönu and E.P. Wigner, Proc. Nat. Acad. Sci. USA 39 (1953) 510
- J. M. Romero, J. D. Vergara and J. A. Santiago, “Noncommutative spaces, the quantum of time and the Lorentz symmetry,” Phys. Rev. D 75, 065008 (2007).
- Rui Vilela Mendes, “Space-Time: Commutative or Noncommutative? Two Length Scales of Noncommutativity”, Phys. Rev. D 99 (2019) 123006
- P. Vitale and J.-C. Wallet, “Noncommutative field theories on Rλ3subscriptsuperscript𝑅3𝜆R^{3}_{\lambda}italic_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT: Toward UV/IR mixing freedom,” JHEP 04 (2013) 115
- A. Géré, P. Vitale, and J.-C. Wallet, “Quantum gauge theories on noncommutative three-dimensional space,” Phys. Rev. D 90 no. 4, (2014) 045019.
- S. Carlip and Weixuan Hu, arXiv:2312.10272
- Kowalski-Glikman J and Smolin L 2004 Triply special relativity Phys. Rev. D 70 065020