Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Word length-aware text spotting: Enhancing detection and recognition in dense text image (2312.15690v1)

Published 25 Dec 2023 in cs.CV

Abstract: Scene text spotting is essential in various computer vision applications, enabling extracting and interpreting textual information from images. However, existing methods often neglect the spatial semantics of word images, leading to suboptimal detection recall rates for long and short words within long-tailed word length distributions that exist prominently in dense scenes. In this paper, we present WordLenSpotter, a novel word length-aware spotter for scene text image detection and recognition, improving the spotting capabilities for long and short words, particularly in the tail data of dense text images. We first design an image encoder equipped with a dilated convolutional fusion module to integrate multiscale text image features effectively. Then, leveraging the Transformer framework, we synergistically optimize text detection and recognition accuracy after iteratively refining text region image features using the word length prior. Specially, we design a Spatial Length Predictor module (SLP) using character count prior tailored to different word lengths to constrain the regions of interest effectively. Furthermore, we introduce a specialized word Length-aware Segmentation (LenSeg) proposal head, enhancing the network's capacity to capture the distinctive features of long and short terms within categories characterized by long-tailed distributions. Comprehensive experiments on public datasets and our dense text spotting dataset DSTD1500 demonstrate the superiority of our proposed methods, particularly in dense text image detection and recognition tasks involving long-tailed word length distributions encompassing a range of long and short words.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. Z. Tian, W. Huang, T. He, P. He, and Y. Qiao, “Detecting text in natural image with connectionist text proposal network,” in Proceedings of the European Conference on Computer Vision, 2016, pp. 56–72.
  2. M. Liao, B. Shi, and X. Bai, “Textboxes++: A single-shot oriented scene text detector,” IEEE Transactions on Image Processing, vol. 27, no. 8, pp. 3676–3690, 2018.
  3. X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, “East: an efficient and accurate scene text detector,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5551–5560.
  4. B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 11, pp. 2298–2304, 2017.
  5. H. Li, P. Wang, and C. Shen, “Towards end-to-end text spotting with convolutional recurrent neural networks,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5238–5246.
  6. X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, and J. Yan, “Fots: Fast oriented text spotting with a unified network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5676–5685.
  7. W. Wang, E. Xie, X. Li, X. Liu, D. Liang, Z. Yang, T. Lu, and C. Shen, “Pan++: Towards efficient and accurate end-to-end spotting of arbitrarily-shaped text,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 5349–5367, 2022.
  8. M. Huang, Y. Liu, Z. Peng, C. Liu, D. Lin, S. Zhu, N. Yuan, K. Ding, and L. Jin, “Swintextspotter: Scene text spotting via better synergy between text detection and text recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022, pp. 4593–4603.
  9. X. Zhang, Y. Su, S. Tripathi, and Z. Tu, “Text spotting transformers,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022, pp. 9519–9528.
  10. D. Peng, X. Wang, Y. Liu, J. Zhang, M. Huang, S. Lai, J. Li, S. Zhu, D. Lin, C. Shen et al., “Spts: single-point text spotting,” in Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 4272–4281.
  11. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  12. D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh, A. Bagdanov, M. Iwamura, J. Matas, L. Neumann, V. R. Chandrasekhar, S. Lu et al., “Icdar 2015 competition on robust reading,” in 2015 13th International Conference on Document Analysis and Recognition.   IEEE, 2015, pp. 1156–1160.
  13. C.-K. Ch’ng, C. S. Chan, and C.-L. Liu, “Total-text: toward orientation robustness in scene text detection,” International Journal on Document Analysis and Recognition, vol. 23, no. 1, pp. 31–52, 2020.
  14. Y. Liu, L. Jin, S. Zhang, C. Luo, and S. Zhang, “Curved scene text detection via transverse and longitudinal sequence connection,” Pattern Recognition, vol. 90, pp. 337–345, 2019.
  15. A. Bissacco, M. Cummins, Y. Netzer, and H. Neven, “Photoocr: Reading text in uncontrolled conditions,” in Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 785–792.
  16. M. Liao, B. Shi, X. Bai, X. Wang, and W. Liu, “Textboxes: A fast text detector with a single deep neural network,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.
  17. Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee, “Character region awareness for text detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 9365–9374.
  18. X. Wang, Y. Jiang, Z. Luo, C.-L. Liu, H. Choi, and S. Kim, “Arbitrary shape scene text detection with adaptive text region representation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 6449–6458.
  19. W. Yu, Y. Liu, W. Hua, D. Jiang, B. Ren, and X. Bai, “Turning a clip model into a scene text detector,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2023, pp. 6978–6988.
  20. C. Yao, X. Bai, B. Shi, and W. Liu, “Strokelets: A learned multi-scale representation for scene text recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 4042–4049.
  21. B. Su and S. Lu, “Accurate recognition of words in scenes without character segmentation using recurrent neural network,” Pattern Recognition, vol. 63, pp. 397–405, 2017.
  22. C.-Y. Lee and S. Osindero, “Recursive recurrent nets with attention modeling for ocr in the wild,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2231–2239.
  23. C. Luo, L. Jin, and Z. Sun, “Moran: A multi-object rectified attention network for scene text recognition,” Pattern Recognition, vol. 90, pp. 109–118, 2019.
  24. C. Liu, C. Yang, H.-B. Qin, X. Zhu, C.-L. Liu, and X.-C. Yin, “Towards open-set text recognition via label-to-prototype learning,” Pattern Recognition, vol. 134, p. 109109, 2023.
  25. P. Lyu, M. Liao, C. Yao, W. Wu, and X. Bai, “Mask textspotter: An end-to-end trainable neural network for spotting text with arbitrary shapes,” in Proceedings of the European Conference on Computer Vision, 2018, pp. 67–83.
  26. M. Liao, P. Lyu, M. He, C. Yao, W. Wu, and X. Bai, “Mask textspotter: An end-to-end trainable neural network for spotting text with arbitrary shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 2, pp. 532–548, 2021.
  27. M. Liao, G. Pang, J. Huang, T. Hassner, and X. Bai, “Mask textspotter v3: Segmentation proposal network for robust scene text spotting,” in Proceedings of the European Conference on Computer Vision, 2020, pp. 706–722.
  28. W. Feng, W. He, F. Yin, X.-Y. Zhang, and C.-L. Liu, “Textdragon: An end-to-end framework for arbitrary shaped text spotting,” in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 9076–9085.
  29. L. Qiao, S. Tang, Z. Cheng, Y. Xu, Y. Niu, S. Pu, and F. Wu, “Text perceptron: Towards end-to-end arbitrary-shaped text spotting,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 11 899–11 907.
  30. R. Ronen, S. Tsiper, O. Anschel, I. Lavi, A. Markovitz, and R. Manmatha, “Glass: Global to local attention for scene-text spotting,” in Proceedings of the European Conference on Computer Vision, 2022, pp. 249–266.
  31. P. Wang, C. Zhang, F. Qi, S. Liu, X. Zhang, P. Lyu, J. Han, J. Liu, E. Ding, and G. Shi, “Pgnet: Real-time arbitrarily-shaped text spotting with point gathering network,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, 2021, pp. 2782–2790.
  32. L. Qiao, Y. Chen, Z. Cheng, Y. Xu, Y. Niu, S. Pu, and F. Wu, “Mango: A mask attention guided one-stage scene text spotter,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 3, 2021, pp. 2467–2476.
  33. Y. Liu, H. Chen, C. Shen, T. He, L. Jin, and L. Wang, “Abcnet: Real-time scene text spotting with adaptive bezier-curve network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 9809–9818.
  34. Y. Liu, C. Shen, L. Jin, T. He, P. Chen, C. Liu, and H. Chen, “Abcnet v2: Adaptive bezier-curve network for real-time end-to-end text spotting,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 8048–8064, 2022.
  35. T. Chen, S. Saxena, L. Li, D. J. Fleet, and G. Hinton, “Pix2seq: A language modeling framework for object detection,” arXiv preprint arXiv:2109.10852, 2021.
  36. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” in Proceedings of the European Conference on Computer Vision, 2020, pp. 213–229.
  37. Y. Kittenplon, I. Lavi, S. Fogel, Y. Bar, R. Manmatha, and P. Perona, “Towards weakly-supervised text spotting using a multi-task transformer,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022, pp. 4604–4613.
  38. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE International Conference on Computer Vision, 2021, pp. 10 012–10 022.
  39. M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 10 781–10 790.
  40. H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese, “Generalized intersection over union: A metric and a loss for bounding box regression,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 658–666.
  41. F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for volumetric medical image segmentation,” in 2016 Fourth International Conference on 3D Vision.   IEEE, 2016, pp. 565–571.
  42. I. Pratikakis, B. Gatos, and K. Ntirogiannis, “Icdar 2013 document image binarization contest (dibco 2013),” in 2013 12th International Conference on Document Analysis and Recognition.   IEEE, 2013, pp. 1471–1476.
  43. N. Nayef, F. Yin, I. Bizid, H. Choi, Y. Feng, D. Karatzas, Z. Luo, U. Pal, C. Rigaud, J. Chazalon et al., “Icdar2017 robust reading challenge on multi-lingual scene text detection and script identification-rrc-mlt,” in 2017 14th IAPR International Conference on Document Analysis and Recognition, vol. 1.   IEEE, 2017, pp. 1454–1459.
  44. P. Sun, R. Zhang, Y. Jiang, T. Kong, C. Xu, W. Zhan, M. Tomizuka, L. Li, Z. Yuan, C. Wang et al., “Sparse r-cnn: End-to-end object detection with learnable proposals,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 14 454–14 463.

Summary

We haven't generated a summary for this paper yet.