Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hidden Conformal Symmetry in AdS$_2\times$S$^2$ Beyond Tree Level (2312.15678v1)

Published 25 Dec 2023 in hep-th

Abstract: Correlators of a certain one-dimensional superconformal field theory dual to hypermultiplets in AdS$_2\times$S$2$ exhibit a hidden four-dimensional conformal symmetry which allows one to repackage all tree-level 4-point correlators into a single four-dimensional object corresponding to a contact diagram arising from a massless $\phi4$ theory in AdS$_2\times$S$2$. This theory serves as a toy model for IIB string theory in AdS$_5\times$S$5$ and is interesting in its own right because AdS$_2\times$S$2$ describes the near-horizon limit of extremal black holes in four dimensions. We argue that after acting with an $SU(1,1)\times SU(2)$ Casimir, all one-loop correlators can similarly be encoded by a four-dimensional function which arises from a one-loop scalar bubble diagram in AdS$_2\times$S$2$, explaining how the hidden conformal symmetry extends beyond tree level. Finally, we conjecture a scalar effective field theory with a derivative interaction in AdS$_2\times$S$2$ whose Witten diagrams should directly reproduce 4-point correlators to all loops without acting with Casimirs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998), 231-252 doi:10.4310/ATMP.1998.v2.n2.a1 [arxiv:hep-th/9711200 [hep-th]].
  2. S. Caron-Huot and A. K. Trinh, “All tree-level correlators in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT×S55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT supergravity: hidden ten-dimensional conformal symmetry,” JHEP 01 (2019), 196 doi:10.1007/JHEP01(2019)196 [arxiv:1809.09173 [hep-th]].
  3. S. Caron-Huot and F. Coronado, “Ten dimensional symmetry of 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM correlators,” JHEP 03 (2022), 151 doi:10.1007/JHEP03(2022)151 [arXiv:2106.03892 [hep-th]].
  4. S. Caron-Huot, F. Coronado and B. Mühlmann, “Determinants in self-dual 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM and twistor space,” JHEP 08 (2023), 008 doi:10.1007/JHEP08(2023)008 [arXiv:2304.12341 [hep-th]].
  5. P. Heslop, “The SAGEX Review on Scattering Amplitudes, Chapter 8: Half BPS correlators,” J. Phys. A 55 (2022) no.44, 443009 doi:10.1088/1751-8121/ac8c71 [arXiv:2203.13019 [hep-th]].
  6. J. M. Drummond, D. Nandan, H. Paul and K. S. Rigatos, “String corrections to AdS amplitudes and the double-trace spectrum of 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM,” JHEP 12 (2019), 173 doi:10.1007/JHEP12(2019)173 [arXiv:1907.00992 [hep-th]].
  7. J. M. Drummond, H. Paul and M. Santagata, “Bootstrapping string theory on AdS5×S5,” Phys. Rev. D 108 (2023) no.2, 026020 doi:10.1103/PhysRevD.108.026020 [arxiv:2004.07282 [hep-th]].
  8. F. Aprile and P. Vieira, “Large p𝑝pitalic_p explorations. From SUGRA to big STRINGS in Mellin space,” JHEP 12 (2020), 206 doi:10.1007/JHEP12(2020)206 [arxiv:2007.09176 [hep-th]].
  9. F. Aprile, J. M. Drummond, H. Paul and M. Santagata, “The Virasoro-Shapiro amplitude in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT and level splitting of 10d conformal symmetry,” JHEP 11 (2021), 109 doi:10.1007/JHEP11(2021)109 [arxiv:2012.12092 [hep-th]].
  10. T. Abl, P. Heslop and A. E. Lipstein, “Towards the Virasoro-Shapiro amplitude in AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” JHEP 04 (2021), 237 doi:10.1007/JHEP04(2021)237 [arxiv:2012.12091 [hep-th]].
  11. L. Rastelli, K. Roumpedakis and X. Zhou, “𝐀𝐝𝐒𝟑×𝐒𝟑subscript𝐀𝐝𝐒3superscript𝐒3\mathbf{AdS_{3}\times S^{3}}bold_AdS start_POSTSUBSCRIPT bold_3 end_POSTSUBSCRIPT × bold_S start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT Tree-Level Correlators: Hidden Six-Dimensional Conformal Symmetry,” JHEP 10 (2019), 140 doi:10.1007/JHEP10(2019)140 [arXiv:1905.11983 [hep-th]].
  12. S. Giusto, R. Russo, A. Tyukov and C. Wen, “The CFT66{}_{6}start_FLOATSUBSCRIPT 6 end_FLOATSUBSCRIPT origin of all tree-level 4-point correlators in AdS×3S3{}_{3}\times S^{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT,” Eur. Phys. J. C 80 (2020) no.8, 736 doi:10.1140/epjc/s10052-020-8300-4 [arxiv:2005.08560 [hep-th]].
  13. L. F. Alday, C. Behan, P. Ferrero and X. Zhou, “Gluon Scattering in AdS from CFT,” JHEP 06 (2021), 020 doi:10.1007/JHEP06(2021)020 [arXiv:2103.15830 [hep-th]].
  14. T. Abl, P. Heslop and A. E. Lipstein, “Higher-dimensional symmetry of AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT×S22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT correlators,” JHEP 03 (2022), 076 doi:10.1007/JHEP03(2022)076 [arxiv:2112.09597 [hep-th]].
  15. B. Bertotti, “Uniform electromagnetic field in the theory of general relativity,” Phys. Rev. 116 (1959), 1331 doi:10.1103/PhysRev.116.1331
  16. I. Robinson, “A Solution of the Maxwell-Einstein Equations,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 7 (1959), 351-352
  17. R. Glew and M. Santagata, “The Veneziano amplitude in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT×S33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT from an 8-dimensional effective action,” JHEP 08 (2023), 010 doi:10.1007/JHEP08(2023)010 [arxiv:2305.01013 [hep-th]].
  18. F. Aprile, J. Drummond, P. Heslop and H. Paul, “Double-trace spectrum of N=4𝑁4N=4italic_N = 4 supersymmetric yang-Mills theory at strong coupling,” Phys. Rev. D 98 (2018) no.12, 126008 doi:10.1103/PhysRevD.98.126008 [arxiv:1802.06889 [hep-th]].
  19. F. Aprile and M. Santagata, “Two particle spectrum of tensor multiplets coupled to AdS3×S3 gravity,” Phys. Rev. D 104 (2021) no.12, 126022 doi:10.1103/PhysRevD.104.126022 [arxiv:2104.00036 [hep-th]].
  20. J. M. Drummond, R. Glew and M. Santagata, “Bern-Carrasco-Johansson relations in AdS5×S3 and the double-trace spectrum of super gluons,” Phys. Rev. D 107 (2023) no.8, L081901 doi:10.1103/PhysRevD.107.L081901 [arxiv:2202.09837 [hep-th]].
  21. P. Ferrero and C. Meneghelli, “Unmixing the Wilson line defect CFT. Part II: analytic bootstrap,” [arXiv:2312.12551 [hep-th]].
  22. H. Paul and M. Santagata, “Genus-one open string amplitudes on AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT×S33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT from CFT,” JHEP 12 (2023), 057 doi:10.1007/JHEP12(2023)057 [arXiv:2309.15506 [hep-th]].
  23. O. Schnetz, “Generalized single-valued hyperlogarithms,” [arXiv:2111.11246 [math-ph]].
  24. J. M. Drummond and H. Paul, “One-loop string corrections to AdS amplitudes from CFT,” JHEP 03 (2021), 038 doi:10.1007/JHEP03(2021)038 [arxiv:1912.07632 [hep-th]].
  25. J. M. Drummond, R. Glew and H. Paul, “One-loop string corrections for AdS Kaluza-Klein amplitudes,” JHEP 12 (2021), 072 doi:10.1007/JHEP12(2021)072 [arxiv:2008.01109 [hep-th]].
  26. F. Aprile, J. M. Drummond, R. Glew and M. Santagata, “One-loop string amplitudes in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT×S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT: Mellin space and sphere splitting,” JHEP 02 (2023), 087 doi:10.1007/JHEP02(2023)087 [arxiv:2207.13084 [hep-th]].
  27. T. Heckelbacher, I. Sachs, E. Skvortsov and P. Vanhove, “Analytical evaluation of AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT Witten diagrams as flat space multi-loop Feynman integrals,” JHEP 08 (2022), 052 doi:10.1007/JHEP08(2022)052 [arxiv:2201.09626 [hep-th]].
  28. L. Eberhardt, S. Komatsu and S. Mizera, “Scattering equations in AdS: scalar correlators in arbitrary dimensions,” JHEP 11 (2020), 158 doi:10.1007/JHEP11(2020)158 [arXiv:2007.06574 [hep-th]].
  29. A. Herderschee, R. Roiban and F. Teng, “On the differential representation and color-kinematics duality of AdS boundary correlators,” JHEP 05 (2022), 026 doi:10.1007/JHEP05(2022)026 [arXiv:2201.05067 [hep-th]].
  30. M. Dodelson and A. Zhiboedov, “Gravitational orbits, double-twist mirage, and many-body scars,” JHEP 12 (2022), 163 doi:10.1007/JHEP12(2022)163 [arXiv:2204.09749 [hep-th]].
  31. Z. Huang and E. Y. Yuan, “Graviton scattering in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT at two loops,” JHEP 04 (2023), 064 doi:10.1007/JHEP04(2023)064 [arXiv:2112.15174 [hep-th]].
  32. J. M. Drummond and H. Paul, “Two-loop supergravity on AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT×S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT from CFT,” JHEP 08 (2022), 275 doi:10.1007/JHEP08(2022)275 [arxiv:2204.01829 [hep-th]].
  33. Z. Huang, B. Wang, E. Y. Yuan and X. Zhou, “AdS super gluon scattering up to two loops: a position space approach,” JHEP 07 (2023), 053 doi:10.1007/JHEP07(2023)053 [arXiv:2301.13240 [hep-th]].
  34. H. Y. Chen and J. i. Sakamoto, “Superconformal Block from Holographic Geometry,” JHEP 07 (2020), 028 doi:10.1007/JHEP07(2020)028 [arXiv:2003.13343 [hep-th]].
  35. E. Panzer, “Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals,” Comput. Phys. Commun. 188 (2015), 148-166 doi:10.1016/j.cpc.2014.10.019 [arxiv:1403.3385 [hep-th]].
  36. S. Weinzierl, “Feynman Integrals,” doi:10.1007/978-3-030-99558-4 [arxiv:2201.03593 [hep-th]].

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com