Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On constructibility of AdS supergluon amplitudes (2312.15484v3)

Published 24 Dec 2023 in hep-th

Abstract: We prove that all tree-level $n$-point supergluon (scalar) amplitudes in AdS$_5$ can be recursively constructed, using factorization and flat-space limit. Our method is greatly facilitated by a natural R-symmetry basis for planar color-ordered amplitudes, which reduces the latter to "partial amplitudes" with simpler pole structures and factorization properties. Given the $n$-point scalar amplitude, we first extract spinning amplitudes with $n{-}2$ scalars and one gluon by imposing "gauge invariance", and then use a special "no-gluon kinematics" to determine the $(n{+}1)$-point scalar amplitude completely (which in turn contains the $n$-point single-gluon amplitude). Explicit results of up to 8-point scalar amplitudes and up to 6-point single-gluon amplitudes are included as supplemental materials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. L. Rastelli and X. Zhou, Phys. Rev. Lett. 118, 091602 (2017), arXiv:1608.06624 [hep-th] .
  2. L. Rastelli and X. Zhou, JHEP 04, 014 (2018a), arXiv:1710.05923 [hep-th] .
  3. L. Rastelli and X. Zhou, JHEP 06, 087 (2018b), arXiv:1712.02788 [hep-th] .
  4. X. Zhou, JHEP 08, 187 (2018a), arXiv:1712.02800 [hep-th] .
  5. L. F. Alday and X. Zhou, Phys. Rev. Lett. 125, 131604 (2020a), arXiv:2006.06653 [hep-th] .
  6. L. F. Alday and X. Zhou, Phys. Rev. X 11, 011056 (2021), arXiv:2006.12505 [hep-th] .
  7. X. Zhou, Phys. Rev. Lett. 127, 141601 (2021), arXiv:2106.07651 [hep-th] .
  8. L. F. Alday and A. Bissi, Phys. Rev. Lett. 119, 171601 (2017), arXiv:1706.02388 [hep-th] .
  9. L. F. Alday and X. Zhou, JHEP 09, 008 (2020b), arXiv:1912.02663 [hep-th] .
  10. Z. Huang and E. Y. Yuan, JHEP 04, 064 (2023), arXiv:2112.15174 [hep-th] .
  11. J. M. Drummond and H. Paul, JHEP 08, 275 (2022), arXiv:2204.01829 [hep-th] .
  12. X. Zhou, JHEP 07, 147 (2018b), arXiv:1804.02397 [hep-th] .
  13. G. Mack,   (2009), arXiv:0907.2407 [hep-th] .
  14. J. Penedones, JHEP 03, 025 (2011), arXiv:1011.1485 [hep-th] .
  15. A. Fayyazuddin and M. Spalinski, Nucl. Phys. B 535, 219 (1998), arXiv:hep-th/9805096 .
  16. A. Karch and E. Katz, JHEP 06, 043 (2002), arXiv:hep-th/0205236 .
  17. We follow the convention of [29].
  18. OEIS database: https://oeis.org/A005043.
Citations (5)

Summary

We haven't generated a summary for this paper yet.