Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Multi-Step Manipulation Tasks from A Single Human Demonstration (2312.15346v2)

Published 23 Dec 2023 in cs.RO

Abstract: Learning from human demonstrations has exhibited remarkable achievements in robot manipulation. However, the challenge remains to develop a robot system that matches human capabilities and data efficiency in learning and generalizability, particularly in complex, unstructured real-world scenarios. We propose a system that processes RGBD videos to translate human actions to robot primitives and identifies task-relevant key poses of objects using Grounded Segment Anything. We then address challenges for robots in replicating human actions, considering the human-robot differences in kinematics and collision geometry. To test the effectiveness of our system, we conducted experiments focusing on manual dishwashing. With a single human demonstration recorded in a mockup kitchen, the system achieved 50-100% success for each step and up to a 40% success rate for the whole task with different objects in a home kitchen. Videos are available at https://robot-dishwashing.github.io

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. A. Amini, A. Selvam Periyasamy, and S. Behnke, “Yolopose: Transformer-based multi-object 6d pose estimation using keypoint regression,” in International Conference on Intelligent Autonomous Systems.   Springer, 2022, pp. 392–406.
  2. S. P. Arunachalam, I. Güzey, S. Chintala, and L. Pinto, “Holo-dex: Teaching dexterity with immersive mixed reality,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 5962–5969.
  3. S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto, “Dexterous imitation made easy: A learning-based framework for efficient dexterous manipulation,” in 2023 ieee international conference on robotics and automation (icra).   IEEE, 2023, pp. 5954–5961.
  4. O. Batchelor, “Multi-camera calibration using one or more calibration patterns,” May 2023. [Online]. Available: https://github.com/oliver-batchelor/multical
  5. P. Beeson and B. Ames, “Trac-ik: An open-source library for improved solving of generic inverse kinematics,” in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).   IEEE, 2015, pp. 928–935.
  6. H. Bharadhwaj, A. Gupta, and S. Tulsiani, “Visual affordance prediction for guiding robot exploration,” IEEE International Conference on Robotics and Automation (ICRA), 2023.
  7. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
  8. S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and L. Van Gool, “One-shot video object segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 221–230.
  9. S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and generalizing a task in a humanoid robot,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 2, pp. 286–298, 2007.
  10. Y.-W. Chao, W. Yang, Y. Xiang, P. Molchanov, A. Handa, J. Tremblay, Y. S. Narang, K. Van Wyk, U. Iqbal, S. Birchfield et al., “Dexycb: A benchmark for capturing hand grasping of objects,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9044–9053.
  11. D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed iterative closest point algorithm,” in 2002 International Conference on Pattern Recognition, vol. 3.   IEEE, 2002, pp. 545–548.
  12. E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics and machine learning,” http://pybullet.org, 2016–2021.
  13. A. Darkhalil, D. Shan, B. Zhu, J. Ma, A. Kar, R. Higgins, S. Fidler, D. Fouhey, and D. Damen, “Epic-kitchens visor benchmark: Video segmentations and object relations,” Advances in Neural Information Processing Systems, vol. 35, pp. 13 745–13 758, 2022.
  14. ——, “Epic-kitchens visor benchmark: Video segmentations and object relations,” in Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks, 2022.
  15. S. Devgon, J. Ichnowski, A. Balakrishna, H. Zhang, and K. Goldberg, “Orienting novel 3d objects using self-supervised learning of rotation transforms,” in 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE).   IEEE, 2020, pp. 1453–1460.
  16. B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match locally: Efficient and robust 3d object recognition,” in 2010 IEEE computer society conference on computer vision and pattern recognition.   Ieee, 2010, pp. 998–1005.
  17. C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for video recognition,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 6202–6211.
  18. Grounded-SAM Contributors, “Grounded-Segment-Anything,” Apr. 2023. [Online]. Available: https://github.com/IDEA-Research/Grounded-Segment-Anything
  19. F. Hagelskjær and A. G. Buch, “Pointvotenet: Accurate object detection and 6 dof pose estimation in point clouds,” in 2020 IEEE International Conference on Image Processing (ICIP).   IEEE, 2020, pp. 2641–2645.
  20. T. Hodan, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis, “T-less: An rgb-d dataset for 6d pose estimation of texture-less objects,” in 2017 IEEE Winter Conference on Applications of Computer Vision (WACV).   IEEE, 2017, pp. 880–888.
  21. Y. Hu, P. Fua, and M. Salzmann, “Perspective flow aggregation for data-limited 6d object pose estimation,” in European Conference on Computer Vision.   Springer, 2022, pp. 89–106.
  22. L. Huang, J. Tan, J. Meng, J. Liu, and J. Yuan, “Hot-net: Non-autoregressive transformer for 3d hand-object pose estimation,” in Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 3136–3145.
  23. J. Ji, R. Krishna, L. Fei-Fei, and J. C. Niebles, “Action genome: Actions as compositions of spatio-temporal scene graphs,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10 236–10 247.
  24. M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in Proceedings of the fourth Eurographics symposium on Geometry processing, vol. 7, 2006, p. 0.
  25. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment anything,” arXiv:2304.02643, 2023.
  26. J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-query path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 2.   IEEE, 2000, pp. 995–1001.
  27. T. Kunz and M. Stilman, “Time-optimal trajectory generation for path following with bounded acceleration and velocity,” Robotics: Science and Systems VIII, pp. 1–8, 2012.
  28. Y. Labbé, J. Carpentier, M. Aubry, and J. Sivic, “Cosypose: Consistent multi-view multi-object 6d pose estimation,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16.   Springer, 2020, pp. 574–591.
  29. S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor policies,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1334–1373, 2016.
  30. F. Li, S. R. Vutukur, H. Yu, I. Shugurov, B. Busam, S. Yang, and S. Ilic, “Nerf-pose: A first-reconstruct-then-regress approach for weakly-supervised 6d object pose estimation supplementary.”
  31. T. Lin, X. Liu, X. Li, E. Ding, and S. Wen, “Bmn: Boundary-matching network for temporal action proposal generation,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 3889–3898.
  32. Y. Lin, A. S. Wang, G. Sutanto, A. Rai, and F. Meier, “Polymetis,” https://facebookresearch.github.io/fairo/polymetis/, 2021.
  33. S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu et al., “Grounding dino: Marrying dino with grounded pre-training for open-set object detection,” arXiv preprint arXiv:2303.05499, 2023.
  34. M. T. Mason and J. K. Salisbury Jr, “Robot hands and the mechanics of manipulation,” 1985.
  35. E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 3400–3407.
  36. A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky, A. Rai, A. Singh, A. Brohan et al., “Open x-embodiment: Robotic learning datasets and rt-x models,” arXiv preprint arXiv:2310.08864, 2023.
  37. C. Pan, B. Okorn, H. Zhang, B. Eisner, and D. Held, “Tax-pose: Task-specific cross-pose estimation for robot manipulation,” in Conference on Robot Learning.   PMLR, 2023, pp. 1783–1792.
  38. F. Perazzi, A. Khoreva, R. Benenson, B. Schiele, and A. Sorkine-Hornung, “Learning video object segmentation from static images,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2663–2672.
  39. F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung, “A benchmark dataset and evaluation methodology for video object segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 724–732.
  40. Y. Qin, Y.-H. Wu, S. Liu, H. Jiang, R. Yang, Y. Fu, and X. Wang, “Dexmv: Imitation learning for dexterous manipulation from human videos,” in European Conference on Computer Vision.   Springer, 2022, pp. 570–587.
  41. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervision,” in International conference on machine learning.   PMLR, 2021, pp. 8748–8763.
  42. D. Shan, J. Geng, M. Shu, and D. F. Fouhey, “Understanding human hands in contact at internet scale,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 9869–9878.
  43. S. H. Shivakumar, M. Oberweger, M. Rad, and V. Lepetit, “Ho-3d: A multi-user, multi-object dataset for joint 3d hand-object pose estimation,” 2019.
  44. A. Sivakumar, K. Shaw, and D. Pathak, “Robotic telekinesis: Learning a robotic hand imitator by watching humans on youtube,” RSS, 2022.
  45. S. Song, A. Zeng, J. Lee, and T. Funkhouser, “Grasping in the wild: Learning 6dof closed-loop grasping from low-cost demonstrations,” Robotics and Automation Letters, 2020.
  46. Y. Su, M. Saleh, T. Fetzer, J. Rambach, N. Navab, B. Busam, D. Stricker, and F. Tombari, “Zebrapose: Coarse to fine surface encoding for 6dof object pose estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 6738–6748.
  47. M. Sundermeyer, T. Hodaň, Y. Labbe, G. Wang, E. Brachmann, B. Drost, C. Rother, and J. Matas, “Bop challenge 2022 on detection, segmentation and pose estimation of specific rigid objects,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 2784–2793.
  48. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288, 2023.
  49. V-HACD Contributors, “The V-HACD library decomposes a 3D surface into a set of ”near” convex parts,” Oct. 2022. [Online]. Available: https://github.com/kmammou/v-hacd
  50. J. Vidal, C.-Y. Lin, X. Lladó, and R. Martí, “A method for 6d pose estimation of free-form rigid objects using point pair features on range data,” Sensors, vol. 18, no. 8, p. 2678, 2018.
  51. P. Voigtlaender and B. Leibe, “Online adaptation of convolutional neural networks for video object segmentation,” arXiv preprint arXiv:1706.09364, 2017.
  52. H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao, P. Hansen-Estruch, Q. Vuong, A. He, V. Myers, K. Fang, C. Finn, and S. Levine, “Bridgedata v2: A dataset for robot learning at scale,” in Conference on Robot Learning (CoRL), 2023.
  53. G. Wang, F. Manhardt, F. Tombari, and X. Ji, “Gdr-net: Geometry-guided direct regression network for monocular 6d object pose estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 16 611–16 621.
  54. J. Wang, S. Dasari, M. K. Srirama, S. Tulsiani, and A. Gupta, “Manipulate by seeing: Creating manipulation controllers from pre-trained representations,” ICCV, 2023.
  55. W. Wang, M. Feiszli, H. Wang, and D. Tran, “Unidentified video objects: A benchmark for dense, open-world segmentation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10 776–10 785.
  56. B. Wen, W. Lian, K. Bekris, and S. Schaal, “You only demonstrate once: Category-level manipulation from single visual demonstration,” arXiv preprint arXiv:2201.12716, 2022.
  57. Y. Wu, A. Javaheri, M. Zand, and M. Greenspan, “Keypoint cascade voting for point cloud based 6dof pose estimation,” in 2022 International Conference on 3D Vision (3DV).   IEEE, 2022, pp. 176–186.
  58. N. Xu, L. Yang, Y. Fan, D. Yue, Y. Liang, J. Yang, and T. Huang, “Youtube-vos: A large-scale video object segmentation benchmark,” 2018.
  59. L. Yang, Y. Wang, X. Xiong, J. Yang, and A. K. Katsaggelos, “Efficient video object segmentation via network modulation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 6499–6507.
  60. L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-Y. Lin, “inerf: Inverting neural radiance fields for pose estimation,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 1323–1330.
  61. T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel, “Deep imitation learning for complex manipulation tasks from virtual reality teleoperation,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 5628–5635.
  62. X. Zhang, Y. Lu, W. Wang, A. Yan, J. Yan, L. Qin, H. Wang, X. Yan, W. Y. Wang, and L. R. Petzold, “Gpt-4v (ision) as a generalist evaluator for vision-language tasks,” arXiv preprint arXiv:2311.01361, 2023.
  63. Z. Zhang, W. Chen, L. Zheng, A. Leonardis, and H. J. Chang, “Trans6d: Transformer-based 6d object pose estimation and refinement,” in European Conference on Computer Vision.   Springer, 2022, pp. 112–128.
  64. T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained bimanual manipulation with low-cost hardware,” arXiv preprint arXiv:2304.13705, 2023.
  65. Y. Zhu, Z. Jiang, P. Stone, and Y. Zhu, “Learning generalizable manipulation policies with object-centric 3d representations,” in 7th Annual Conference on Robot Learning, 2023. [Online]. Available: https://openreview.net/forum?id=9SM6l0HyY_
  66. Y. Zhu, A. Joshi, P. Stone, and Y. Zhu, “VIOLA: Object-centric imitation learning for vision-based robot manipulation,” in 6th Annual Conference on Robot Learning, 2022. [Online]. Available: https://openreview.net/forum?id=L8hCfhPbFho
  67. L. Zou, Z. Huang, N. Gu, and G. Wang, “6d-vit: Category-level 6d object pose estimation via transformer-based instance representation learning,” IEEE Transactions on Image Processing, vol. 31, pp. 6907–6921, 2022.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com