Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic models of memristive behavior (2312.15212v2)

Published 23 Dec 2023 in cs.ET and physics.class-ph

Abstract: Under normal operations, memristive devices undergo variability in time and space and have internal dynamics. Interplay of memory and stochastic signal processing in memristive devices makes them candidates for performing bio-inspired tasks of information transduction and transformation, where intrinsic random behavior can be harnessed for high performance of circuits built up of individual memory storing elements. The paper discusses models of single memristive devices exhibiting both - dynamic hysteresis and Stochastic Resonance, addressing also the cooperative effect of correlated noises acting on the system and occurrence of dirty hysteretic rounding.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. L. Chua, “Memristor, the missing circuit element,” IEEE Trans. Circuit Theor. 5, 507 (1971).
  2. L. Chua and S. M. Kang, “Memristive devices and systems,” Proceedings of the IEEE 64, 209–223 (1976).
  3. D. B. Strukov, G. S. Snider, D. R. Stewart,  and R. S. Williams, “The missing memristor found,” Nature 453, 80–83 (2008).
  4. Y. V. Pershin and M. Di Ventra, “Memory effects in complex materials and nanoscale systems,” Advances in Physics 60, 145–227 (2011).
  5. L. Chua, “If it’s pinched it’s a memristor,” Semiconductor Science and Technology 29, 104001 (2014).
  6. Y. Pershin and M. Di Ventra, “A simple test for ideal memristors,” Journal of Physics D: Applied Physics 52, 01LT01 (2018).
  7. Y. V. Pershin, J. Kim, T. Datta,  and M. Di Ventra, “An experimental demonstration of the memristor test,” Physica E: Low-dimensional Systems and Nanostructures 142, 115290 (2022).
  8. F. Caravelli and J. P. Carbajal, “Memristors for the curious outsiders,” Technologies 6, 118 (2018).
  9. A. G. Radwan and M. E. Fouda, On the mathematical modeling of memristor, memcapacitor and meminductor (Springer International Publishing Cham, Heidelberg, 2015).
  10. S. Battistoni, M. Cocuzza, S. L. Marasso, A. Verna,  and V. Erokhin, “The role of the internal capacitance in organic memristive device for neuromorphic and sensing applications,” Advanced Electronic Materials 8, 2101319 (2022).
  11. F. J. Alonso, D. Maldonado, A. M. Aguilera,  and J. B. Roldán, “Memristor variability and stochastic physical properties modeling from a multivariate time series approach,” Chaos, Solitons and Fractals 143, 110461 (2021).
  12. F. Caravelli, F. L. Traversa,  and M. Di Ventra, “The complex dynamics of memristive circuits: analytical results and universal slow relaxation,” Physical Review E 95, 022140 (2017).
  13. J. B. Roldán, E. Miranda, D. Maldonado, A. N. Mikhaylov, N. V. Agudov, A. A. Dubkov, M. N. Koryazhkina, M. B. González, M. A. Villena, S. Poblador, M. Saludes-Tapia, R. Picos, F. Jiménez-Molinos, S. G. Stavrinides, E. Salvador, F. J. Alonso, F. Campabadal, B. Spagnolo, M. Lanza,  and L. O. Chua, “Variability in resistive memories,” Advanced Intelligent Systems 5, 2200338 (2023).
  14. Q. Wan and Y. Shi, Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception and Robotics (Wiley-VCH GmbH, Hoboken, 2022).
  15. C. S. Hwang, “Prospective of semiconductor memory devices: from memory system to materials,” Advanced Electronic Materials 1, 1400056 (2015).
  16. R. Benzi, A. Sutera,  and A. Vulpiani, “The mechanism of stochastic resonance,” Journal of Physics A: Mathematical and General 14, L453 (1981).
  17. C. Nicolis and G. Nicolis, “Stochastic aspects of climatic transitions–additive fluctuations,” Tellus 33, 225–234 (1981).
  18. L. Gammaitoni, P. Hänggi, P. Jung,  and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223–287 (1998).
  19. S. M. Bezrukov and I. Vodyanoy, “Stochastic resonance in non-dynamical systems without response thresholds,” Nature 385, 319–321 (1997).
  20. B. Dybiec and E. Gudowska-Nowak, “Lévy stable noise induced transitions: Stochastic resonance, resonant activation and dynamic hysteresis,” J. Stat. Mech.: Theory and Exp. , 05004–05020 (2009).
  21. M. Evstigneev, P. Reimann, C. Schmitt,  and C. Bechinger, “Quantifying stochastic resonance: theory versus experiment,” Journal of Physics: Condensed Matter 17, S3795 (2005).
  22. A. Stotland and M. Di Ventra, “Stochastic memory: Memory enhancement due to noise,” Phys. Rev. E 85, 011116 (2012).
  23. A. Mikhaylov, D. Guseinov, A. Belov, D. Korolev, M. Shishmakova, M. Koryazhkina, D. Filatov, O. Gorshkov, D. Maldonado, F. Alonso, J. Roldán, A. Krichigin, N. Agudov, A. Dubkov, A. Carollo,  and B. Spagnolo, “Stochastic resonance in a metal-oxide memristive device,” Chaos, Solitons & Fractals 144, 110723 (2021).
  24. V. A. Slipko and Y. V. Pershin, “Probabilistic model of resistance jumps in memristive devices,” Phys. Rev. E 107, 064117 (2023).
  25. E. Gudowska-Nowak, B. Dybiec,  and H. Flyvbjerg, “Resonant effects in a voltage-activated channel gating,” SPIE Proc. Series 5467, 223–234 (2004).
  26. H. Flyvbjerg, E. Gudowska-Nowak, P. Christophersen,  and P. Bennekou, “Modeling hysteresis observed in the human erythrocyte voltage-dependent cation channel,” Acta Phys. Pol. B 43, 2117–2140 (2012).
  27. S. M. Rappaport, O. Teijido, D. P. Hoogerheide, T. K. Rostovtseva, A. M. Berezhkovskii,  and S. M. Bezrukov, “Conductance hysteresis in the voltage dependent anion-selective channel,” European Biophysics Journal 44, 465–472 (2015).
  28. K. Sznajd-Weron, A. Jedrzejewski,  and B. Kamińska, “Toward understanding of the social hysteresis: Insights from agent-based modeling,” Perspectives on Psychological Science 2023, 1–11 (2023).
  29. R. Carboni and D. Ielmini, “Stochastic memory devices for security and computing,” Advanced Electronic Materials 5, 1900198 (2019).
  30. P. F. Góra, “The logistic equation and a linear stochastic resonance,” Acta Phys. Pol. B 35, 1583 (2004).
  31. A. Schilling, K. Tziridis, S. H.,  and P. Krauss, “The stochastic resonance model of auditory perception: A unified explanation of tinnitus development, Zwicker tone illusion, and residual inhibition.” Prog Brain Res. 262, 139–157 (2021).
  32. E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty,  and F. Moss, “Visual perception of stochastic resonance,” Phys. Rev. Lett. 78, 1186–1189 (1997).
  33. D. R. Chialvo, A. Longtin,  and J. Müller-Gerking, “Stochastic resonance in models of neuronal ensembles,” Phys. Rev. E 55, 1798–1808 (1997).

Summary

We haven't generated a summary for this paper yet.