Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CSI Measurements and Initial Results for Massive MIMO to UAV Communication (2312.15188v1)

Published 23 Dec 2023 in eess.SY and cs.SY

Abstract: Non-Terrestrial Network (NTN) has been envisioned as a key component of the sixth-generation (6G) mobile communication system. Meanwhile, unmanned aerial vehicles (UAVs) play an important role in enabling and deploying NTNs. In this paper, we focus on massive multi-input multi-output (MaMIMO) supported UAV communications, where channel state information (CSI) was measured considering different heights and trajectories of a rotary-wing drone. To characterize the propagation channel for this air-to-ground link, some initial results were analyzed, such as stationary distance. To investigate the impact of channels on communication performance, we analyzed spectral efficiency (SE) by using Maximum Ratio Combining (MRC). This study shows that the presented space-time-frequency channel dataset facilitates channel correlation analysis and supports performance evaluation for MaMIMO-UAV communications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. M. M. Azari, et.al, “Evolution of non-terrestrial networks from 5G to 6G: A survey,” IEEE Commun. Surv. Tutor., vol. 24, no. 4, pp. 2633–2672, 2022.
  2. J. Xu, X. Cheng, and L. Bai, “A 3-D space-time-frequency non-stationary model for low-altitude UAV mmwave and massive MIMO aerial fading channels,” IEEE Trans. Antennas Propag., vol. 70, no. 11, pp. 10 936–10 950, 2022.
  3. T. J. Willink, C. C. Squires, G. W. K. Colman, and M. T. Muccio, “Measurement and characterization of low-altitude air-to-ground MIMO channels,” IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2637–2648, 2016.
  4. K. Psychogios, N. Moraitis, and A. D. Panagopoulos, “MIMO channel measurements in a tree covered urban environment for low-altitude UAVs,” in Proc. 12th Int. Conf. Mod. Circuits Syst. Technol. (MOCAST), 2023, pp. 1–4.
  5. A. Colpaert, C. Thys, Z. Cui, and S. Pollin, “MaMIMO-UAV 3D channel state information dataset,” 2023. [Online]. Available: https://doi.org/10.48804/0IMQDF
  6. A. Colpaert, Z. Cui, E. Vinogradov, and S. Pollin, “3D non-stationary channel measurement and analysis for MaMIMO-UAV communications,” arXiv preprint arXiv:2310.06579, 2023.
  7. A. Colpaert, S. De Bast, R. Beerten, A. P. Guevara, Z. Cui, and S. Pollin, “Massive MIMO channel measurement data set for localization and communication,” IEEE Commun. Mag., vol. 61, no. 9, pp. 114–120, 2023.
  8. D. W. Matolak and R. Sun, “Air–ground channel characterization for unmanned aircraft systems–part i: Methods, measurements, and models for over-water settings,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 26–44, 2017.
  9. Z. Cui, Z. Zhong, K. Guan, and D. He, “An acceleration method for ray-tracing simulation based on channel quasi-stationarity regions,” in Proc. 12th Eur. Conf. Antennas Propag., 2018, pp. 1–5.
  10. R. He, O. Renaudin, V.-M. Kolmonen, K. Haneda, Z. Zhong, B. Ai, and C. Oestges, “Characterization of quasi-stationarity regions for vehicle-to-vehicle radio channels,” IEEE Trans. Antennas Propag., vol. 63, no. 5, pp. 2237–2251, 2015.
  11. T. Zhou, C. Tao, S. Salous, and L. Liu, “Spatial characterization for high-speed railway channels based on moving virtual array measurement scheme,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 1423–1426, 2017.
  12. M. Banagar, H. S. Dhillon, and A. F. Molisch, “Impact of UAV wobbling on the air-to-ground wireless channel,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 14 025–14 030, 2020.
Citations (2)

Summary

We haven't generated a summary for this paper yet.