Density functional theory beyond the Born-Oppenheimer approximation: Exact mapping onto an electronically non-interacting Kohn-Sham molecule (2312.15080v2)
Abstract: This work presents an alternative, general, and in-principle exact extension of electronic Kohn-Sham density functional theory (KS-DFT) to the fully quantum-mechanical molecular problem. Unlike in existing multi-component or exact-factorization-based DFTs of electrons and nuclei, both nuclear and electronic densities are mapped onto a fictitious electronically non-interacting molecule (referred to as KS molecule), where the electrons still interact with the nuclei. Moreover, in the present molecular KS-DFT, no assumption is made about the mathematical form (exactly factorized or not) of the molecular wavefunction. By expanding the KS molecular wavefunction `a la Born-Huang, we obtain a self-consistent set of "KS beyond Born-Oppenheimer" electronic equations coupled to nuclear equations that describe nuclei interacting among themselves and with non-interacting electrons. An exact adiabatic connection formula is derived for the Hartree-exchange-correlation energy of the electrons within the molecule and, on that basis, a practical adiabatic density-functional approximation is proposed and discussed.
- P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
- W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
- E. Runge and E. K. Gross, Phys. Rev. Lett. 52, 997 (1984).
- M. Casida and M. Huix-Rotllant, Annu. Rev. Phys. Chem. 63, 287 (2012).
- M. Baer, “Beyond born-oppenheimer: Electronic nonadiabatic coupling terms and conical intersections,” (Wiley, Hoboken, NJ, 2006).
- T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86, 2984 (2001).
- N. Gidopoulos, Phys. Rev. B 57, 2146 (1998).
- D. Mejía-Rodríguez and A. de la Lande, The Journal of Chemical Physics 150, 174115 (2019).
- R. Requist and E. K. U. Gross, Phys. Rev. Lett. 117, 193001 (2016).
- M. Levy, Proc. Natl. Acad. Sci. 76, 6062 (1979).
- E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).
- J. Harris and R. O. Jones, Journal of Physics F: Metal Physics 4, 1170 (1974).
- D. Langreth and J. Perdew, Solid State Communications 17, 1425 (1975).
- O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
- M. Levy and F. Zahariev, Phys. Rev. Lett. 113, 113002 (2014).
- A. K. Theophilou, J. Phys. C: Solid State Phys. 12, 5419 (1979).
- A. K. Theophilou, “The single particle density in physics and chemistry,” (Academic Press, 1987) pp. 210–212.
- T. R. Scott, J. Kozlowski, S. Crisostomo, A. Pribram-Jones, and K. Burke, “Exact conditions for ensemble density functional theory,” (2023), arXiv:2307.00187 [cond-mat.str-el] .
- K. Deur and E. Fromager, J. Chem. Phys. 150, 094106 (2019).
- E. Fromager, Phys. Rev. Lett. 124, 243001 (2020).