Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Density functional theory beyond the Born-Oppenheimer approximation: Exact mapping onto an electronically non-interacting Kohn-Sham molecule (2312.15080v2)

Published 22 Dec 2023 in physics.chem-ph

Abstract: This work presents an alternative, general, and in-principle exact extension of electronic Kohn-Sham density functional theory (KS-DFT) to the fully quantum-mechanical molecular problem. Unlike in existing multi-component or exact-factorization-based DFTs of electrons and nuclei, both nuclear and electronic densities are mapped onto a fictitious electronically non-interacting molecule (referred to as KS molecule), where the electrons still interact with the nuclei. Moreover, in the present molecular KS-DFT, no assumption is made about the mathematical form (exactly factorized or not) of the molecular wavefunction. By expanding the KS molecular wavefunction `a la Born-Huang, we obtain a self-consistent set of "KS beyond Born-Oppenheimer" electronic equations coupled to nuclear equations that describe nuclei interacting among themselves and with non-interacting electrons. An exact adiabatic connection formula is derived for the Hartree-exchange-correlation energy of the electrons within the molecule and, on that basis, a practical adiabatic density-functional approximation is proposed and discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
  2. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
  3. E. Runge and E. K. Gross, Phys. Rev. Lett. 52, 997 (1984).
  4. M. Casida and M. Huix-Rotllant, Annu. Rev. Phys. Chem. 63, 287 (2012).
  5. M. Baer, “Beyond born-oppenheimer: Electronic nonadiabatic coupling terms and conical intersections,”  (Wiley, Hoboken, NJ, 2006).
  6. T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86, 2984 (2001).
  7. N. Gidopoulos, Phys. Rev. B 57, 2146 (1998).
  8. D. Mejía-Rodríguez and A. de la Lande, The Journal of Chemical Physics 150, 174115 (2019).
  9. R. Requist and E. K. U. Gross, Phys. Rev. Lett. 117, 193001 (2016).
  10. M. Levy, Proc. Natl. Acad. Sci. 76, 6062 (1979).
  11. E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).
  12. J. Harris and R. O. Jones, Journal of Physics F: Metal Physics 4, 1170 (1974).
  13. D. Langreth and J. Perdew, Solid State Communications 17, 1425 (1975).
  14. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
  15. M. Levy and F. Zahariev, Phys. Rev. Lett. 113, 113002 (2014).
  16. A. K. Theophilou, J. Phys. C: Solid State Phys. 12, 5419 (1979).
  17. A. K. Theophilou, “The single particle density in physics and chemistry,”  (Academic Press, 1987) pp. 210–212.
  18. T. R. Scott, J. Kozlowski, S. Crisostomo, A. Pribram-Jones,  and K. Burke, “Exact conditions for ensemble density functional theory,”  (2023), arXiv:2307.00187 [cond-mat.str-el] .
  19. K. Deur and E. Fromager, J. Chem. Phys. 150, 094106 (2019).
  20. E. Fromager, Phys. Rev. Lett. 124, 243001 (2020).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com