Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Admitted Technical Debt Detection Approaches: A Decade Systematic Review (2312.15020v3)

Published 19 Dec 2023 in cs.SE and cs.AI

Abstract: Technical debt (TD) represents the long-term costs associated with suboptimal design or code decisions in software development, often made to meet short-term delivery goals. Self-Admitted Technical Debt (SATD) occurs when developers explicitly acknowledge these trade-offs in the codebase, typically through comments or annotations. Automated detection of SATD has become an increasingly important research area, particularly with the rise of NLP, ML, and deep learning (DL) techniques that aim to streamline SATD detection. This systematic literature review provides a comprehensive analysis of SATD detection approaches published between 2014 and 2024, focusing on the evolution of techniques from NLP-based models to more advanced ML, DL, and Transformers-based models such as BERT. The review identifies key trends in SATD detection methodologies and tools, evaluates the effectiveness of different approaches using metrics like precision, recall, and F1-score, and highlights the primary challenges in this domain, including dataset heterogeneity, model generalizability, and the explainability of models. The findings suggest that while early NLP methods laid the foundation for SATD detection, more recent advancements in DL and Transformers models have significantly improved detection accuracy. However, challenges remain in scaling these models for broader industrial use. This SLR offers insights into current research gaps and provides directions for future work, aiming to improve the robustness and practicality of SATD detection tools.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (83)
  1. doi:10.1016/j.infsof.2018.05.010.
  2. doi:10.4230/DagRep.6.4.110.
  3. doi:10.1145/157709.157715.
  4. doi:10.1145/1882362.1882373.
  5. doi:10.1016/j.jss.2012.12.052.
  6. doi:10.1016/j.jss.2014.12.027.
  7. doi:10.1016/j.infsof.2015.10.008.
  8. doi:10.1145/2884781.2884822.
  9. doi:10.1109/MS.2012.167.
  10. doi:10.1109/MTD.2014.9.
  11. doi:10.1016/j.jss.2019.02.056. URL https://doi.org/10.1016/j.jss.2019.02.056
  12. doi:10.1145/2460999.2461005.
  13. E. D. Liddy, Natural language processing (2001).
  14. doi:10.1002/ARIS.1440370103.
  15. doi:10.1201/9780824746346.
  16. doi:10.1007/978-81-322-3972-7{_}19.
  17. doi:10.14257/ijseia.2015.9.11.12.
  18. doi:10.1145/2889160.2891053.
  19. doi:10.48550/arXiv.2202.02387.
  20. doi:10.1145/1368088.1368123.
  21. doi:10.1007/BF03194494.
  22. doi:10.1109/MSR.2010.5463344.
  23. doi:10.1109/MSR.2013.6623997.
  24. doi:10.14236/ewic/EASE2008.8.
  25. doi:10.1007/11767718{_}3.
  26. doi:10.1145/2601248.2601268.
  27. doi:10.1109/TSE.2014.2327027.
  28. doi:10.1145/3524843.3528097.
  29. doi:10.1145/3524843.3528098.
  30. doi:10.1109/TSE.2020.3001339.
  31. doi:10.1016/j.jss.2021.110936.
  32. doi:10.1097/01.NAJ.0000446779.99522.f6.
  33. doi:10.1007/978-3-319-18305-3{_}1.
  34. doi:10.1007/BF00116892.
  35. doi:10.1038/nature14539.
  36. doi:10.1109/SANER53432.2022.00094.
  37. doi:10.1007/s10515-022-00358-6.
  38. doi:10.1109/TSE.2020.3031401.
  39. doi:10.1007/s10664-022-10121-w.
  40. doi:10.1109/ICSME.2014.31.
  41. doi:10.1109/SANER.2016.72.
  42. doi:10.1016/j.infsof.2020.106270.
  43. doi:10.1145/3447247.
  44. doi:10.1016/j.infsof.2022.106855.
  45. doi:10.1109/SEAA51224.2020.00083.
  46. doi:10.1109/MTD.2015.7332621.
  47. doi:10.1049/icp.2021.0881.
  48. doi:10.1109/ICSME.2017.8.
  49. doi:10.1109/TSE.2017.2654244.
  50. doi:10.1145/3183440.3183478.
  51. doi:10.1109/ACCESS.2019.2933318.
  52. doi:10.1109/IWESEP.2018.00010.
  53. doi:10.1109/APSEC48747.2019.00050.
  54. doi:10.1145/3379597.3387459.
  55. doi:10.1109/SEAA51224.2020.00069.
  56. doi:10.1007/s10664-020-09854-3.
  57. doi:10.1007/s11219-020-09520-3.
  58. doi:10.1109/SCAM51674.2020.00011.
  59. doi:10.1109/MSR52588.2021.00048.
  60. doi:10.1007/s10664-020-09917-5.
  61. doi:10.1109/TR.2021.3087864.
  62. doi:10.1007/s10664-022-10128-3.
  63. doi:10.1109/TSE.2021.3115772.
  64. doi:10.1016/j.scico.2021.102693.
  65. doi:10.11591/ijece.v13i2.pp2142-2155.
  66. doi:10.1145/3324916.
  67. doi:10.1007/978-3-030-43020-7{_}93.
  68. doi:10.1109/SANER48275.2020.9054868.
  69. doi:10.1145/3324884.3416583.
  70. doi:10.5220/0009796001570165.
  71. doi:10.1007/s11704-020-9281-z.
  72. doi:10.1007/978-3-030-75418-1{_}25.
  73. doi:10.1088/1742-6596/1955/1/012102.
  74. doi:10.1016/j.jss.2022.111219.
  75. doi:10.1145/3524843.3528093.
  76. doi:10.1007/s10515-022-00364-8.
  77. doi:10.1002/spe.3117.
  78. doi:10.53106/160792642022052303021.
  79. doi:10.3233/JIFS-211273.
  80. doi:10.1016/j.jss.2022.111514.
  81. doi:10.1007/s10664-017-9522-4.
  82. doi:10.1016/j.eng.2022.04.024.
  83. doi:10.1145/1764810.1764814.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com