Compton Amplitude for Rotating Black Hole from QFT (2312.14913v3)
Abstract: We construct a candidate tree-level gravitational Compton amplitude for a rotating Kerr black hole, for any quantum spin s=0,1/2,1,...,$\infty$, from which we extract the corresponding classical amplitude to all orders in the spin vector $S\mu$. We use multiple insights from massive higher-spin quantum field theory, such as massive gauge invariance and improved behavior in the massless limit. A chiral-field approach is particularly helpful in ensuring correct degrees of freedom, and for writing down compact off-shell interactions for general spin. The simplicity of the interactions is echoed in the structure of the spin-s Compton amplitude, for which we use homogeneous symmetric polynomials of the spin variables. Where possible, we compare to the general-relativity results in the literature, available up to eighth order in spin.
- R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).
- W. D. Goldberger and I. Z. Rothstein, Phys. Rev. D73, 104029 (2006), arXiv:hep-th/0409156 [hep-th] .
- R. A. Porto, Phys. Rev. D73, 104031 (2006), arXiv:gr-qc/0511061 [gr-qc] .
- M. Levi and J. Steinhoff, JHEP 09, 219 (2015), arXiv:1501.04956 [gr-qc] .
- R. A. Porto, Phys. Rept. 633, 1 (2016), arXiv:1601.04914 [hep-th] .
- M. Levi, Rept. Prog. Phys. 83, 075901 (2020), arXiv:1807.01699 [hep-th] .
- M. V. S. Saketh and J. Vines, Phys. Rev. D 106, 124026 (2022), arXiv:2208.03170 [gr-qc] .
- M. Ben-Shahar, (2023), arXiv:2311.01430 [hep-th] .
- T. Scheopner and J. Vines, (2023), arXiv:2311.18421 [gr-qc] .
- J. Vines, Class. Quant. Grav. 35, 084002 (2018), arXiv:1709.06016 [gr-qc] .
- E. T. Newman and A. I. Janis, J. Math. Phys. 6, 915 (1965).
- D. Kosmopoulos and A. Luna, JHEP 07, 037 (2021), arXiv:2102.10137 [hep-th] .
- F. Alessio and P. Di Vecchia, Phys. Lett. B 832, 137258 (2022), arXiv:2203.13272 [hep-th] .
- G. Menezes and M. Sergola, JHEP 10, 105 (2022), arXiv:2205.11701 [hep-th] .
- Y. F. Bautista, Phys. Rev. D 108, 084036 (2023), arXiv:2304.04287 [hep-th] .
- R. Aoude and A. Ochirov, JHEP 12, 103 (2023), arXiv:2307.07504 [hep-th] .
- Y. M. Zinoviev, (2001), arXiv:hep-th/0108192 .
- Y. M. Zinoviev, Nucl. Phys. B 770, 83 (2007), arXiv:hep-th/0609170 .
- Y. M. Zinoviev, Class. Quant. Grav. 26, 035022 (2009a), arXiv:0805.2226 [hep-th] .
- Y. M. Zinoviev, Nucl. Phys. B 821, 431 (2009b), arXiv:0901.3462 [hep-th] .
- A. Ochirov and E. Skvortsov, Phys. Rev. Lett. 129, 241601 (2022), arXiv:2207.14597 [hep-th] .
- L. Cangemi and P. Pichini, JHEP 06, 167 (2023), arXiv:2207.03947 [hep-th] .
- H. S. Chia, Phys. Rev. D 104, 024013 (2021), arXiv:2010.07300 [gr-qc] .
- M. M. Ivanov and Z. Zhou, Phys. Rev. Lett. 130, 091403 (2023), arXiv:2209.14324 [hep-th] .
- S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
- W. H. Press and S. A. Teukolsky, Astrophys. J. 185, 649 (1973).
- S. A. Teukolsky and W. H. Press, Astrophys. J. 193, 443 (1974).
- M. Fierz and W. Pauli, Proc. Roy. Soc. Lond. A 173, 211 (1939).
- L. P. S. Singh and C. R. Hagen, Phys. Rev. D9, 898 (1974a).
- L. P. S. Singh and C. R. Hagen, Phys. Rev. D9, 910 (1974b).
- K. Johnson and E. C. G. Sudarshan, Annals Phys. 13, 126 (1961).
- G. Velo and D. Zwanziger, Phys. Rev. 186, 1337 (1969).
- M. Porrati, Phys. Lett. B 304, 77 (1993), arXiv:gr-qc/9301012 .
- Y. M. Zinoviev, JHEP 08, 084 (2010), arXiv:1007.0158 [hep-th] .
- E. Skvortsov and M. Tsulaia, (2023), arXiv:2312.08184 [hep-th] .
- H. Johansson and A. Ochirov, JHEP 09, 040 (2019), arXiv:1906.12292 [hep-th] .
- N. Siemonsen and J. Vines, Phys. Rev. D 101, 064066 (2020), arXiv:1909.07361 [gr-qc] .
- R. Aoude and A. Ochirov, JHEP 10, 008 (2021), arXiv:2108.01649 [hep-th] .
- P. W. Atkins and J. C. Dobson, Proc. Roy. Soc. Lond. A321, 321 (1971).
- J. M. Radcliffe, Journal of Physics A: General Physics 4, 313 (1971).
- A. M. Perelomov, Soviet Physics Uspekhi 20, 703 (1977).
- R. Kleiss and W. J. Stirling, Phys. Lett. B179, 159 (1986).
- S. Dittmaier, Phys. Rev. D59, 016007 (1998), arXiv:hep-ph/9805445 [hep-ph] .
- C. Schwinn and S. Weinzierl, JHEP 0505, 006 (2005), arXiv:hep-th/0503015 [hep-th] .
- E. Conde and A. Marzolla, JHEP 09, 041 (2016), arXiv:1601.08113 [hep-th] .