Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FAST: Feature Aware Similarity Thresholding for Weak Unlearning in Black-Box Generative Models (2312.14895v2)

Published 22 Dec 2023 in cs.LG and cs.AI

Abstract: The heightened emphasis on the regulation of deep generative models, propelled by escalating concerns pertaining to privacy and compliance with regulatory frameworks, underscores the imperative need for precise control mechanisms over these models. This urgency is particularly underscored by instances in which generative models generate outputs that encompass objectionable, offensive, or potentially injurious content. In response, machine unlearning has emerged to selectively forget specific knowledge or remove the influence of undesirable data subsets from pre-trained models. However, modern machine unlearning approaches typically assume access to model parameters and architectural details during unlearning, which is not always feasible. In multitude of downstream tasks, these models function as black-box systems, with inaccessible pre-trained parameters, architectures, and training data. In such scenarios, the possibility of filtering undesired outputs becomes a practical alternative. The primary goal of this study is twofold: first, to elucidate the relationship between filtering and unlearning processes, and second, to formulate a methodology aimed at mitigating the display of undesirable outputs generated from models characterized as black-box systems. Theoretical analysis in this study demonstrates that, in the context of black-box models, filtering can be seen as a form of weak unlearning. Our proposed \textbf{\textit{Feature Aware Similarity Thresholding(FAST)}} method effectively suppresses undesired outputs by systematically encoding the representation of unwanted features in the latent space.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. P. Celard, E. Iglesias, J. Sorribes-Fdez, R. Romero, A. S. Vieira, and L. Borrajo, “A survey on deep learning applied to medical images: from simple artificial neural networks to generative models,” Neural Computing and Applications, vol. 35, no. 3, pp. 2291–2323, 2023.
  2. G. Varoquaux and V. Cheplygina, “Machine learning for medical imaging: methodological failures and recommendations for the future,” NPJ digital medicine, vol. 5, no. 1, p. 48, 2022.
  3. J. E. Ball, D. T. Anderson, and C. S. Chan, “Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community,” Journal of applied remote sensing, vol. 11, no. 4, pp. 042 609–042 609, 2017.
  4. A. A. Adegun, S. Viriri, and J.-R. Tapamo, “Review of deep learning methods for remote sensing satellite images classification: experimental survey and comparative analysis,” Journal of Big Data, vol. 10, no. 1, p. 93, 2023.
  5. S. Jia, S. Jiang, Z. Lin, N. Li, M. Xu, and S. Yu, “A survey: Deep learning for hyperspectral image classification with few labeled samples,” Neurocomputing, vol. 448, pp. 179–204, 2021.
  6. X. Wang, Q. Hu, Y. Cheng, and J. Ma, “Hyperspectral image super-resolution meets deep learning: A survey and perspective,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 8, pp. 1664–1687, 2023.
  7. K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza, R. Cohn, C. W. Park, A. Choudhary, A. Agrawal, S. J. Billinge et al., “Recent advances and applications of deep learning methods in materials science,” npj Computational Materials, vol. 8, no. 1, p. 59, 2022.
  8. B. Yang and Y. Xu, “Applications of deep-learning approaches in horticultural research: a review,” Horticulture Research, vol. 8, 2021.
  9. Z. Liu, L. Jin, J. Chen, Q. Fang, S. Ablameyko, Z. Yin, and Y. Xu, “A survey on applications of deep learning in microscopy image analysis,” Computers in biology and medicine, vol. 134, p. 104523, 2021.
  10. D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling, “Semi-supervised learning with deep generative models,” In Proc. of NeurIPS, 2014.
  11. Z. E. Ekolle and R. Kohno, “Genco: A generative learning model for heterogeneous text classification based on collaborative partial classifications,” In Proc. of MDPI, 2023.
  12. D. Li, J. Yang, K. Kreis, A. Torralba, and S. Fidler, “Semantic segmentation with generative models: Semi-supervised learning and strong out-of-domain generalization,” In Proc. of CVPR, 2021.
  13. E. Goldman, “An introduction to the california consumer privacy act (ccpa),” Santa Clara Univ. Legal Studies Research Paper, 2020.
  14. S. Moon, S. Cho, and D. Kim, “Feature unlearning for pre-trained gans and vaes,” arXiv Preprint, 2023.
  15. R. Gandikota, J. Materzynska, J. Fiotto-Kaufman, and D. Bau, “Erasing concepts from diffusion models,” In Proc. of ICCV, 2023.
  16. Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of International Conference on Computer Vision (ICCV), 2015.
  17. H. Xu, T. Zhu, L. Zhang, W. Zhou, and P. S. Yu, “Machine unlearning: A survey,” ACM Computing Surveys Vol. 56, No. 1, 2020.
  18. T. T. Nguyen, T. T. Huynh, P. L. Nguyen, A. W.-C. Liew, H. Yin, and Q. V. H. Nguyen, “A survey of machine unlearning,” arXiv preprint arXiv:2209.02299, 2022.
  19. Y. Cao and J. Yang, “Towards making systems forget with machine unlearning,” In Proc. of IEEE Symposium on Security and Privacy, 2015.
  20. A. Ginart, M. Guan, G. Valiant, and J. Y. Zou, “Making ai forget you: Data deletion in machine learning,” In Proc. of NIPS, 2019.
  21. J. Brophy and D. Lowd, “Machine unlearning for random forests,” In Proc. of ICML, 2021.
  22. S. Neel, A. Roth, and S. Sharifi-Malvajerdi, “Descent-to-delete: Gradient-based methods for machine unlearning,” In Proc. of ALT, 2021.
  23. P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,” In Proc. of ICML, 2017.
  24. C. Guo, T. Goldstein, A. Hannun, and L. van der Maaten, “Certified data removal from machine learning models,” In Proc. of ICML, 2020.
  25. L. Graves, V. Nagisetty, and V. Ganesh, “Amnesiac machine learning,” In Proc. of AAAI, 2021.
  26. A. Golatkar, A. Achille, and S. Soatto, “Eternal sunshine of the spotless net: Selective forgetting in deep networks,” In Proc. of CVPR, 2020.
  27. P. Tiwary, A. Guha, S. Panda, and P. A.P, “Adapt then unlearn: Exploiting parameter space semantics for unlearning in generative adversarial networks,” arXiv Preprint, 2023.
  28. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” In Proc. of NeuRIPS, 2014.
  29. T. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” In Proc. of ICML, 2017.
  30. R. T. Sebastian Nowozin, Botond Cseke, “f-gan: Training generative neural samplers using variational divergence minimization,” In Proc. of NeurIPS, 2016.
  31. X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Infogan: Interpretable representation learning by information maximizing generative adversarial nets,” In Proc. of NeurIPS, 2016.
  32. T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved quality, stability, and variation,” In Proc. of ICLR, 2018.
  33. T. Karras, T. Aila, and S. Laine, “A style-based generator architecture for generative adversarial networks,” In Proc. of CVPR, 2018.
  34. T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and improving the image quality of stylegan,” In Proc. of CVPR, 2020.
  35. T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and T. Aila, “Alias-free generative adversarial networks,” Advances in Neural Information Processing Systems, vol. 34, pp. 852–863, 2021.
  36. S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “Clustergan: Latent space clustering in generative adversarial networks,” In Proc. of AAAI, 2019.
  37. W. Xia, Y. Zhang, Y. Yang, J.-H. Xue, B. Zhou, and M.-H. Yang, “Gan inversion: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
  38. J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, “Generative visual manipulation on the natural image manifold,” In Proc. of ECCV, 2016.
  39. M. Huh, R. Zhang, J.-Y. Zhu, S. Paris, and A. Hertzmann, “Transforming and projecting images into class-conditional generative networks,” In Proc. of ECCV, 2020.
  40. O. Tov, Y. Alaluf, Y. Nitzan, O. Patashnik, and D. Cohen-Or, “Designing an encoder for stylegan image manipulation,” ACM Transactions on Graphics, 2021.
  41. T. M. Dinh, A. T. Tran, R. Nguyen, and B.-S. Hua, “Hyperinverter: Improving stylegan inversion via hypernetwork,” In Proc. of CVPR, 2022.
  42. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  43. S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1492–1500.
  44. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” Advances in neural information processing systems, vol. 30, 2017.
  45. M. F. Naeem, S. J. Oh, Y. C. Youngjung Uh, and J. Yoo, “Reliable fidelity and diversity metrics for generative models,” In Proc. of ICML, 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.