Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fusion of irreducible modules in the periodic Temperley--Lieb algebra (2312.14837v2)

Published 22 Dec 2023 in math-ph, cond-mat.stat-mech, hep-th, and math.MP

Abstract: We propose a new family ${\sf Y}{k,\ell,x,y,[z,w]}$ of modules over the enlarged periodic Temperley--Lieb algebra ${\sf{\cal E}PTL}_N(\beta)$. These modules are built from link states with two marked points, similarly to the modules ${\sf X}{k,\ell,x,y,z}$ that we constructed in a previous paper. They however differ in the way that defects connect pairwise. We analyse the decomposition of ${\sf Y}{k,\ell,x,y,[z,w]}$ over the irreducible standard modules ${\sf W}{k,x}$ for generic values of the parameters $z$ and $w$, and use it to deduce the fusion rules for the fusion $\sf W \times W$ of standard modules. These turn out to be more symmetric than those obtained previously using the modules ${\sf X}{k,\ell,x,y,z}$. From the work of Graham and Lehrer, it is known that, for $\beta=-q-q{-1}$ where $q$ is not a root of unity, there exists a set of non-generic values of the twist $y$ for which the standard module ${\sf W}{\ell,y}$ is indecomposable yet reducible with two composition factors: a radical submodule ${\sf R}{\ell,y}$ and a quotient module ${\sf Q}{\ell,y}$. Here, we construct the fusion products $\sf W\times R$, $\sf W\times Q$ and $\sf Q\times Q$, and analyse their decomposition over indecomposable modules. For the fusions involving the quotient modules ${\sf Q}$, we find very simple results reminiscent of $\mathfrak{sl}(2)$ fusion rules. This construction with modules ${\sf Y}_{k,\ell,x,y,[z,w]}$ is a good lattice regularization of the operator product expansion in the underlying logarithmic bulk conformal field theory. Indeed, it fits with the correspondence between standard modules and connectivity operators, and is useful for the calculation of their correlation functions. Remarkably, we show that the fusion rules $\sf W\times Q$ and $\sf Q\times Q$ are consistent with the known fusion rules of degenerate primary fields.

Summary

We haven't generated a summary for this paper yet.