Progressing from Anomaly Detection to Automated Log Labeling and Pioneering Root Cause Analysis (2312.14748v1)
Abstract: The realm of AIOps is transforming IT landscapes with the power of AI and ML. Despite the challenge of limited labeled data, supervised models show promise, emphasizing the importance of leveraging labels for training, especially in deep learning contexts. This study enhances the field by introducing a taxonomy for log anomalies and exploring automated data labeling to mitigate labeling challenges. It goes further by investigating the potential of diverse anomaly detection techniques and their alignment with specific anomaly types. However, the exploration doesn't stop at anomaly detection. The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies. This uncharted territory holds immense potential for revolutionizing IT systems management. In essence, this paper enriches our understanding of anomaly detection, and automated labeling, and sets the stage for transformative root cause analysis. Together, these advances promise more resilient IT systems, elevating operational efficiency and user satisfaction in an ever-evolving technological landscape.
- D. Rosendo, G. Leoni, D. Gomes, A. Moreira, G. Gonçalves, P. Endo, J. Kelner, D. Sadok, and M. Mahloo, “How to improve cloud services availability? investigating the impact of power and it subsystems failures,” in HICSS, 2018.
- A. Gulenko, A. Acker, O. Kao, and F. Liu, “Ai-governance and levels of automation for aiops-supported system administration,” in ICCCN. IEEE, 2020.
- H. Zawawy, K. Kontogiannis, and J. Mylopoulos, “Log filtering and interpretation for root cause analysis,” in IEEE International Conference on Software Maintenance (ICSM), 2010.
- J. Bogatinovski and S. Nedelkoski, “Multi-source anomaly detection in distributed IT systems,” in ICSOC, 2020.
- T. Wittkopp, P. Wiesner, D. Scheinert, and A. Acker, “Loglab: Attention-based labeling of log data anomalies via weak supervision,” in ICSOC. Springer, 2021.
- T. Wittkopp, D. Scheinert, P. Wiesner, A. Acker, and O. Kao, “PULL: reactive log anomaly detection based on iterative PU learning,” in Hawaii International Conference on System Sciences (HICSS), 2023.
- H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen, “Logmine: Fast pattern recognition for log analytics,” in ACM International on Conference on Information and Knowledge Management (CIKM), 2016.
- Ł. Korzeniowski and K. Goczyła, “Landscape of automated log analysis: A systematic literature review and mapping study,” IEEE Access, 2022.
- S. Lu, B. Rao, X. Wei, B. Tak, L. Wang, and L. Wang, “Log-based abnormal task detection and root cause analysis for spark,” in IEEE International Conference on Web Services (ICWS), 2017.
- M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and diagnosis from system logs through deep learning,” in SIGSAC, 2017.
- S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao, “Self-supervised log parsing,” in ECML-PKDD. Springer, 2020.
- T. Wittkopp, A. Acker, S. Nedelkoski, J. Bogatinovski, D. Scheinert, W. Fan, and O. Kao, “A2log: Attentive augmented log anomaly detection,” in HICSS, 2022.
- X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang, Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable log data,” in ESEC/FSE, 2019.
- L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang, “Semi-supervised log-based anomaly detection via probabilistic label estimation,” in ICSE. IEEE, 2021.
- Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, and H. Xu, “Time series data augmentation for deep learning: A survey,” arXiv preprint arXiv:2002.12478, 2020.
- A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré, “Data programming: Creating large training sets, quickly,” NIPS, 2016.
- T. Wittkopp, P. Wiesner, D. Scheinert, and O. Kao, “A taxonomy of anomalies in log data,” in ICSOC. Springer, 2021.
- L. M. Manevitz and M. Yousef, “One-class svms for document classification,” Journal of machine Learning research, vol. 2, no. Dec, 2001.
- Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction in ibm bluegene/l event logs,” in ICDM. IEEE, 2007.
- X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “Swisslog: Robust and unified deep learning based log anomaly detection for diverse faults,” in ISSRE. IEEE, 2020.
- H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detection via BERT,” in IJCNN. IEEE, 2021.
- L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang, “Semi-supervised log-based anomaly detection via probabilistic label estimation,” in International Conference on Software Engineering (ICSE). IEEE, 2021.
- P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing approach with fixed depth tree,” in ICWS. IEEE, 2017.
- W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang, S. Tao, P. Sun, and R. Zhou, “Loganomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured logs,” in International Joint Conference on Artificial Intelligence (IJCAI), 2019.
- A. Farzad and T. A. Gulliver, “Unsupervised log message anomaly detection,” ICT Express, 2020.
- Z.-H. Zhou, “A brief introduction to weakly supervised learning,” National science review, vol. 5, no. 1, 2018.
- B. Liu, W. S. Lee, P. S. Yu, and X. Li, “Partially supervised classification of text documents,” in ICML. Sydney, NSW, 2002.
- B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu, “Building text classifiers using positive and unlabeled examples,” in ICDM. IEEE, 2003.
- X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synthesis lectures on artificial intelligence and machine learning, vol. 3, no. 1, 2009.
- J. Bekker and J. Davis, “Learning from positive and unlabeled data: A survey,” Machine Learning, vol. 109, no. 4, 2020.
- V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM computing surveys (CSUR), vol. 41, no. 3, 2009.
- G. Sebestyen, A. Hangan, Z. Czako, and G. Kovacs, “A taxonomy and platform for anomaly detection,” in AQTR. IEEE, 2018.
- X. Song, M. Wu, C. M. Jermaine, and S. Ranka, “Conditional anomaly detection,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 5, 2007.
- A. Oliner and J. Stearley, “What supercomputers say: A study of five system logs,” in DSN, 2007.
- S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log analysis for anomaly detection,” in ISSRE. IEEE, 2016.
- J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from console logs for system problem detection.” in USENIX Annual Technical Conference, 2010.
- F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth ieee international conference on data mining. IEEE, 2008.
- H. Sukhwani, R. Matias, K. S. Trivedi, and A. Rindos, “Monitoring and mitigating software aging on ibm cloud controller system,” in ISSREW. IEEE, 2017.
- J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,” in NAACL-HLT, J. Burstein, C. Doran, and T. Solorio, Eds. Association for Computational Linguistics, 2019.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017.
- K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D. Brown, “Text classification algorithms: A survey,” Information, vol. 10, no. 4, 2019.