Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Progressing from Anomaly Detection to Automated Log Labeling and Pioneering Root Cause Analysis (2312.14748v1)

Published 22 Dec 2023 in cs.LG and cs.SE

Abstract: The realm of AIOps is transforming IT landscapes with the power of AI and ML. Despite the challenge of limited labeled data, supervised models show promise, emphasizing the importance of leveraging labels for training, especially in deep learning contexts. This study enhances the field by introducing a taxonomy for log anomalies and exploring automated data labeling to mitigate labeling challenges. It goes further by investigating the potential of diverse anomaly detection techniques and their alignment with specific anomaly types. However, the exploration doesn't stop at anomaly detection. The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies. This uncharted territory holds immense potential for revolutionizing IT systems management. In essence, this paper enriches our understanding of anomaly detection, and automated labeling, and sets the stage for transformative root cause analysis. Together, these advances promise more resilient IT systems, elevating operational efficiency and user satisfaction in an ever-evolving technological landscape.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. D. Rosendo, G. Leoni, D. Gomes, A. Moreira, G. Gonçalves, P. Endo, J. Kelner, D. Sadok, and M. Mahloo, “How to improve cloud services availability? investigating the impact of power and it subsystems failures,” in HICSS, 2018.
  2. A. Gulenko, A. Acker, O. Kao, and F. Liu, “Ai-governance and levels of automation for aiops-supported system administration,” in ICCCN.   IEEE, 2020.
  3. H. Zawawy, K. Kontogiannis, and J. Mylopoulos, “Log filtering and interpretation for root cause analysis,” in IEEE International Conference on Software Maintenance (ICSM), 2010.
  4. J. Bogatinovski and S. Nedelkoski, “Multi-source anomaly detection in distributed IT systems,” in ICSOC, 2020.
  5. T. Wittkopp, P. Wiesner, D. Scheinert, and A. Acker, “Loglab: Attention-based labeling of log data anomalies via weak supervision,” in ICSOC.   Springer, 2021.
  6. T. Wittkopp, D. Scheinert, P. Wiesner, A. Acker, and O. Kao, “PULL: reactive log anomaly detection based on iterative PU learning,” in Hawaii International Conference on System Sciences (HICSS), 2023.
  7. H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen, “Logmine: Fast pattern recognition for log analytics,” in ACM International on Conference on Information and Knowledge Management (CIKM), 2016.
  8. Ł. Korzeniowski and K. Goczyła, “Landscape of automated log analysis: A systematic literature review and mapping study,” IEEE Access, 2022.
  9. S. Lu, B. Rao, X. Wei, B. Tak, L. Wang, and L. Wang, “Log-based abnormal task detection and root cause analysis for spark,” in IEEE International Conference on Web Services (ICWS), 2017.
  10. M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and diagnosis from system logs through deep learning,” in SIGSAC, 2017.
  11. S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao, “Self-supervised log parsing,” in ECML-PKDD.   Springer, 2020.
  12. T. Wittkopp, A. Acker, S. Nedelkoski, J. Bogatinovski, D. Scheinert, W. Fan, and O. Kao, “A2log: Attentive augmented log anomaly detection,” in HICSS, 2022.
  13. X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang, Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable log data,” in ESEC/FSE, 2019.
  14. L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang, “Semi-supervised log-based anomaly detection via probabilistic label estimation,” in ICSE.   IEEE, 2021.
  15. Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, and H. Xu, “Time series data augmentation for deep learning: A survey,” arXiv preprint arXiv:2002.12478, 2020.
  16. A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré, “Data programming: Creating large training sets, quickly,” NIPS, 2016.
  17. T. Wittkopp, P. Wiesner, D. Scheinert, and O. Kao, “A taxonomy of anomalies in log data,” in ICSOC.   Springer, 2021.
  18. L. M. Manevitz and M. Yousef, “One-class svms for document classification,” Journal of machine Learning research, vol. 2, no. Dec, 2001.
  19. Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction in ibm bluegene/l event logs,” in ICDM.   IEEE, 2007.
  20. X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “Swisslog: Robust and unified deep learning based log anomaly detection for diverse faults,” in ISSRE.   IEEE, 2020.
  21. H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detection via BERT,” in IJCNN.   IEEE, 2021.
  22. L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang, “Semi-supervised log-based anomaly detection via probabilistic label estimation,” in International Conference on Software Engineering (ICSE).   IEEE, 2021.
  23. P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing approach with fixed depth tree,” in ICWS.   IEEE, 2017.
  24. W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang, S. Tao, P. Sun, and R. Zhou, “Loganomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured logs,” in International Joint Conference on Artificial Intelligence (IJCAI), 2019.
  25. A. Farzad and T. A. Gulliver, “Unsupervised log message anomaly detection,” ICT Express, 2020.
  26. Z.-H. Zhou, “A brief introduction to weakly supervised learning,” National science review, vol. 5, no. 1, 2018.
  27. B. Liu, W. S. Lee, P. S. Yu, and X. Li, “Partially supervised classification of text documents,” in ICML.   Sydney, NSW, 2002.
  28. B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu, “Building text classifiers using positive and unlabeled examples,” in ICDM.   IEEE, 2003.
  29. X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synthesis lectures on artificial intelligence and machine learning, vol. 3, no. 1, 2009.
  30. J. Bekker and J. Davis, “Learning from positive and unlabeled data: A survey,” Machine Learning, vol. 109, no. 4, 2020.
  31. V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM computing surveys (CSUR), vol. 41, no. 3, 2009.
  32. G. Sebestyen, A. Hangan, Z. Czako, and G. Kovacs, “A taxonomy and platform for anomaly detection,” in AQTR.   IEEE, 2018.
  33. X. Song, M. Wu, C. M. Jermaine, and S. Ranka, “Conditional anomaly detection,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 5, 2007.
  34. A. Oliner and J. Stearley, “What supercomputers say: A study of five system logs,” in DSN, 2007.
  35. S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log analysis for anomaly detection,” in ISSRE.   IEEE, 2016.
  36. J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from console logs for system problem detection.” in USENIX Annual Technical Conference, 2010.
  37. F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth ieee international conference on data mining.   IEEE, 2008.
  38. H. Sukhwani, R. Matias, K. S. Trivedi, and A. Rindos, “Monitoring and mitigating software aging on ibm cloud controller system,” in ISSREW.   IEEE, 2017.
  39. J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,” in NAACL-HLT, J. Burstein, C. Doran, and T. Solorio, Eds.   Association for Computational Linguistics, 2019.
  40. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017.
  41. K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D. Brown, “Text classification algorithms: A survey,” Information, vol. 10, no. 4, 2019.

Summary

  • The paper presents LogLAB, an automated log labeling method that leverages monitoring alerts to reduce the need for manual tagging.
  • It establishes a taxonomy for log anomalies by categorizing them into point, contextual, template, and attribute anomalies to inform detection techniques.
  • The study pioneers root cause analysis in AIOps by using PU learning to manage uncertain data, potentially increasing IT system resilience.

Introduction

Artificial intelligence for IT operations (AIOps) presents itself as a powerful tool in taming the complexity of modern IT systems, offering indispensable support for operation and development teams. A focal point of AIOps is anomaly detection, an IT system watchdog that sniffs out abnormalities indicating potential system failures. This intricate task, however, faces the hurdle of scarce and valuable labeled data required to train sophisticated AI models, particularly those based on deep learning.

The Challenge of Labeled Data

The crux of the problem in log anomaly detection lies in the exhaustive process needed to label the gargantuan flow of log data. The manual effort demanded for tagging each log entry as normal or anomalous is a significant resource drain. This is where supervised models enter the scene, asserting their worth by demonstrating impressive anomaly detection performance when fed an appropriate diet of labeled data. The paper proposes leveraging different types of anomalies and a proposed automated labeling approach, LogLAB, to conquer the challenge of insufficient labeled data.

Techniques and Taxonomy

A critical aspect of log file analysis is distinguishing the characteristics of each log entry. This paper proposes using popular methods such as tokenization, embedding, and templates which aim to capture the essence of log messages in a form readily digestible for AI models. Furthermore, the researchers introduce a taxonomy for log anomalies, categorizing them into point, contextual, template, and attribute anomalies. This taxonomy is instrumental for determining the nature of anomalies and choosing the most effective anomaly detection technique for each case.

Automated Log Labeling and Beyond

The automated data labeling strategy, LogLAB, is a noteworthy outcome of the paper. This strategy utilizes alerts from monitoring systems as proxies for potential abnormal activity within logs, bypassing the need for elaborate manual labeling. When evaluating LogLAB against numerous benchmarks, it exhibits superior performance by maintaining high F1-scores even amidst a significant presence of inaccurate labels. This showcases LogLAB's potential as a reliable tool for future automated anomaly detection.

Pioneering Root Cause Analysis

Looking beyond the realms of anomaly detection and automated labeling, the paper paves the way for a paradigm shift towards root cause analysis. The goal here is to not just detect anomalies but to unravel the events that lead to them. Root cause analysis presents its set of challenges, such as dealing with uncertainties and the diverse nature of log entries. The proposed use of PU learning could be the key, allowing models to operate with a mix of certain (normal) and uncertain (anomalous) data which could dramatically improve the process of identifying actual root causes.

Conclusion

The implications of this paper are expansive, suggesting a future where AIOps systems don't just stop at alerting about anomalies but continue searching for their root causes. By offering a method to facilitate the generation of labeled data and a strategic approach to address anomaly detection, this research elevates the potential of AI-based systems management. Enhanced IT resilience, efficiency, and user satisfaction seem well within reach as we continue to integrate AI and machine learning more deeply into technology's fabric.