Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mining multi-modal communication patterns in interaction with explainable and non-explainable robots (2312.14634v1)

Published 22 Dec 2023 in cs.RO and cs.AI

Abstract: We investigate interaction patterns for humans interacting with explainable and non-explainable robots. Non-explainable robots are here robots that do not explain their actions or non-actions, neither do they give any other feedback during interaction, in contrast to explainable robots. We video recorded and analyzed human behavior during a board game, where 20 humans verbally instructed either an explainable or non-explainable Pepper robot to move objects on the board. The transcriptions and annotations of the videos were transformed into transactions for association rule mining. Association rules discovered communication patterns in the interaction between the robots and the humans, and the most interesting rules were also tested with regular chi-square tests. Some statistically significant results are that there is a strong correlation between men and non-explainable robots and women and explainable robots, and that humans mirror some of the robot's modality. Our results also show that it is important to contextualize human interaction patterns, and that this can be easily done using association rules as an investigative tool. The presented results are important when designing robots that should adapt their behavior to become understandable for the interacting humans.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. T. Hellström and S. Bensch, “Understandable robots-what, why, and how,” Paladyn, Journal of Behavioral Robotics, vol. 9, no. 1, pp. 110–123, 2018.
  2. L. Takayama, D. Dooley, and W. Ju, “Expressing thought: Improving robot readability with animation principles,” in 2011 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI), March 2011, pp. 69–76.
  3. M. J. Gielniak and A. L. Thomaz, “Generating anticipation in robot motion,” in 2011 RO-MAN, July 2011, pp. 449–454.
  4. C. Lichtenthäler, “Legibility of robot behavior investigating legibility of robot navigation in human-robot path crossing scenarios,” Ph.D. dissertation, Technische Universität München, 2014.
  5. C. Lichtenthäler, T. Lorenzy, and A. Kirsch, “Influence of legibility on perceived safety in a virtual human-robot path crossing task,” in 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, Sept 2012, pp. 676–681.
  6. K. Dautenhahn, S. Woods, C. Kaouri, M. Walters, K. L. Koay, and I. Werry, “What is a robot companion - friend, assistant or butler?” in Proc. IEEE IRS/RSJ Int. Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada,, 2005, pp. 1488–1493.
  7. A. K. Singh, N. Baranwal, K.-F. Richter, T. Hellström, and S. Bensch, “Verbal explanations by collaborating robot teams,” Paladyn, Journal of Behavioral Robotics, vol. 12, no. 1, pp. 47–57, 2021. [Online]. Available: https://doi.org/10.1515/pjbr-2021-0001
  8. Y. Mualla, I. Tchappi, T. Kampik, A. Najjar, D. Calvaresi, A. Abbas-Turki, S. Galland, and C. Nicolle, “The quest of parsimonious xai: A human-agent architecture for explanation formulation,” Artificial Intelligence, vol. 302, p. 103573, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0004370221001247
  9. A. Zhou, D. Hadfield-Menell, A. Nagabandi, and A. D. Dragan, “Expressive robot motion timing,” in Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, HRI 2017, Vienna, Austria, March 6-9, 2017, 2017, pp. 22–31. [Online]. Available: http://dl.acm.org/citation.cfm?id=3020221
  10. A. D. Dragan, K. C. Lee, and S. S. Srinivasa, “Legibility and predictability of robot motion,” in Proceedings of the 8th ACM/IEEE International Conference on Human-robot Interaction, ser. HRI ’13.   Piscataway, NJ, USA: IEEE Press, 2013, pp. 301–308. [Online]. Available: http://dl.acm.org/citation.cfm?id=2447556.2447672
  11. R. Chadalavada, H. Andreasson, R. Krug, and A. J. Lilienthal, “That’s on my mind! robot to human intention communication through on-board projection on shared floor space,” in Proceedings of European Conference on Mobile Robots, 2015.
  12. K. Kobayashi and S. Yamada, “Making a mobile robot to express its mind by motion overlap,” in Advances in Human-Robot Interaction,, V. A. Kulyukin, Ed.   InTech, 2009.
  13. B. Kühnlenz, S. Sosnowski, M. Buß, D. Wollherr, K. Kühnlenz, and M. Buss, “Increasing helpfulness towards a robot by emotional adaption to the user,” Int J Soc Robot, vol. 5, no. 4, pp. 457–476, 2013.
  14. H. Karvonen and I. Aaltonen, “Intent communication of highly autonomous robots,” in The 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI 2017), 2017.
  15. V. Raman and H. Kress-Gazit, “Explaining impossible high-level robot behaviors,” IEEE Transactions on Robotics, vol. 29, no. 1, pp. 94–104, 2013.
  16. M. Matarese, F. Rea, and A. Sciutti, “A user-centred framework for explainable artificial intelligence in human-robot interaction,” CoRR, vol. abs/2109.12912, 2021. [Online]. Available: https://arxiv.org/abs/2109.12912
  17. C. Breazeal, “Towards sociable robots,” ROBOTICS AND AUTONOMOUS SYSTEMS, vol. 42, 2002.
  18. K. Dautenhahn, “The art of designing socially intelligent agents: Science, fiction, and the human in the loop,” Applied Artificial Intelligence, vol. 12, no. 7-8, pp. 573–617, 1998. [Online]. Available: https://doi.org/10.1080/088395198117550
  19. R. Paleja, M. Ghuy, N. Ranawaka Arachchige, R. Jensen, and M. Gombolay, “The utility of explainable ai in ad hoc human-machine teaming,” in Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34.   Curran Associates, Inc., 2021, pp. 610–623. [Online]. Available: https://proceedings.neurips.cc/paper˙files/paper/2021/file/05d74c48b5b30514d8e9bd60320fc8f6-Paper.pdf
  20. T. Nomugaudra and K. Kawakami, “Relationships between robot’s self- disclosures and human’s anxiety toward robots,” in Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology.   IEEE Computer Society, 2011, pp. 66–69.
  21. G. Baud-Bovy, P. Morasso, F. Nori, G. Sandini, and A. Sciutti, “Human machine interaction and communication in cooperative actions,” in Bioinspired Approaches for Human-Centric Technologies, S. I. Publishing, Ed., 2014, pp. 241–268.
  22. F. Rietz, A. Sutherland, S. Bensch, S. Wermter, and T. Hellström, “WoZ4U: An open-source wizard-of-oz interface for easy, efficient and robust hri experiments,” Frontiers in Robotics and AI, vol. 8, 2021.
  23. P. Wittenburg, H. Brugman, A. Russel, A. Klassmann, and H. Sloetjes, “ELAN: a professional framework for multimodality research,,” in 5th International Conference on Language Resources and Evaluation (LREC 2006), 2006, pp. 1556–1559.
  24. R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between sets of items in large databases,” SIGMOD Rec., vol. 22, no. 2, p. 207–216, 1993. [Online]. Available: https://doi.org/10.1145/170036.170072
  25. J. Demsar, T. Curk, A. Erjavec, C. Gorup, T. Hocevar, M. Milutinovic, M. Mozina, M. Polajnar, M. Toplak, A. Staric, M. Stajdohar, L. Umek, L. Zagar, J. Zbontar, M. Zitnik, and B. Zupan, “Orange: Data mining toolbox in python,” Journal of Machine Learning Research, vol. 14, pp. 2349–2353, 2013.
  26. J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without candidate generation: A frequent-pattern tree approach,” Data Mining and Knowledge Discovery, vol. 8, pp. 53–87, 2004.
  27. C. R. Agrawal, C. C. Aggarwal, and V. V. V. Prasad, “Depth first generation of long patterns,” in Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ’00), 2000, pp. 108–118.
  28. P. Baxter, J. Kennedy, E. Senft, S. Lemaignan, and T. Belpaeme, “From characterising three years of hri to methodology and reporting recommendations,” in The Eleventh ACM/IEEE International Conference on Human Robot Interaction, ser. HRI ’16.   IEEE Press, 2016, p. 391–398.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Suna Bensch (5 papers)
  2. Amanda Eriksson (1 paper)

Summary

We haven't generated a summary for this paper yet.