Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Observing dark matter clumps and asteroid-mass primordial black holes in the solar system with gravimeters and GNSS networks (2312.14520v1)

Published 22 Dec 2023 in astro-ph.CO, astro-ph.EP, gr-qc, and hep-ph

Abstract: In this proceedings, we study the possible gravitational impact of primordial black holes (PBHs) or dark matter (DM) clumps on GNSS satellite orbits and gravimeter measurements. It provides a preliminary step to the future exhaustive statistical analysis over 28 years of gravimeter and GNSS data to get constraints over the density of asteroid-mass PBH and DM clumps inside the solar system. Such constraints would be the first to be obtained by direct observation on a terrestrial scale.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. Stephen Hawking. Gravitationally collapsed objects of very low mass. Mon. Not. Roy. Astron. Soc., 152:75, 1971.
  2. Black holes in the early Universe. Mon. Not. Roy. Astron. Soc., 168:399–415, 1974.
  3. Edward Witten. Cosmic Separation of Phases. Phys. Rev. D, 30:272–285, 1984.
  4. Stable Bound States of Asymmetric Dark Matter. Phys. Rev. D, 90(5):055030, 2014. [Erratum: Phys.Rev.D 91, 039907 (2015)].
  5. Detecting Dark Blobs. Phys. Rev. D, 98(11):115020, 2018.
  6. Axion miniclusters. Physics Letters B, 205(2):228–230, 1988.
  7. Axion minicluster power spectrum and mass function. JCAP, 12:038, 2017.
  8. Formation of solitonic stars through gravitational cooling. Phys. Rev. Lett., 72:2516–2519, 1994.
  9. Colloquium: The physics of axion stars. Rev. Mod. Phys., 91:041002, 2019.
  10. Boson Stars: Gravitational Equilibria of Selfinteracting Scalar Fields. Phys. Rev. Lett., 57:2485–2488, 1986.
  11. Boson Stars from Self-Interacting Dark Matter. JHEP, 02:028, 2016.
  12. Revisiting constraints on asteroid-mass primordial black holes as dark matter candidates. JCAP, 08:031, 2019.
  13. Jérémy Auffinger. Limits on primordial black holes detectability with Isatis: a BlackHawk tool. Eur. Phys. J. C, 82(4):384, 2022.
  14. C. J. Horowitz and R. Widmer-Schnidrig. Gravimeter search for compact dark matter objects moving in the Earth. Phys. Rev. Lett., 124(5):051102, 2020.
  15. Vladimir S. Aslanov. Removal of Large Space Debris by a Tether Tow. In Rigid Body Dynamics for Space Applications, pages 255–356. Butterworth-Heinemann, jan 2017.
  16. CODE product series for the IGS-MGEX project, 2020.
  17. Uncertainty of absolute gravity measurements. Journal of Geophysical Research, 110, 05 2005.
  18. Constraints on dark matter in the solar system. Astron. Lett., 39:141–149, 2013.
  19. Searching for dark clumps with gravitational-wave detectors. Phys. Rev. D, 106(6):063015, 2022.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com