Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beam Foreseeing in Millimeter-Wave Systems with Situational Awareness: Fundamental Limits via Cramér-Rao Lower Bound (2312.14495v1)

Published 22 Dec 2023 in cs.SI, cs.IT, eess.SP, and math.IT

Abstract: Millimeter-wave (mmWave) networks offer the potential for high-speed data transfer and precise localization, leveraging large antenna arrays and extensive bandwidths. However, these networks are challenged by significant path loss and susceptibility to blockages. In this study, we delve into the use of situational awareness for beam prediction within the 5G NR beam management framework. We introduce an analytical framework based on the Cram\'{e}r-Rao Lower Bound, enabling the quantification of 6D position-related information of geometric reflectors. This includes both 3D locations and 3D orientation biases, facilitating accurate determinations of the beamforming gain achievable by each reflector or candidate beam. This framework empowers us to predict beam alignment performance at any given location in the environment, ensuring uninterrupted wireless access. Our analysis offers critical insights for choosing the most effective beam and antenna module strategies, particularly in scenarios where communication stability is threatened by blockages. Simulation results show that our approach closely approximates the performance of an ideal, Oracle-based solution within the existing 5G NR beam management system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. 3GPP, “NR and NG-RAN overall description - Rel. 15,” TS 38.300, 2018.
  2. M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi, “A tutorial on beam management for 3GPP NR at mmWave frequencies,” IEEE Commun. Surveys & Tutorials, vol. 21, no. 1, pp. 173–196, Sept. 2019.
  3. M. Alrabeiah and A. Alkhateeb, “Deep learning for mmWave beam and blockage prediction using sub-6GHz channels,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5504–5518, Sept. 2020.
  4. F. Göttsch and M. Kaneko, “Deep learning-based beamforming and blockage prediction for sub-6GHz/mmWave mobile networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1–6.
  5. A. Bonfante, L. G. Giordano, I. Macaluso, and N. Marchetti, “Performance of predictive indoor mmWave networks with dynamic blockers,” IEEE Trans. Cogn. Commun. Netw., pp. 1–1, 2021.
  6. A. Ö. Kaya and H. Viswanathan, “Deep learning-based predictive beam management for 5G mmWave systems,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2021, pp. 1–7.
  7. M. Gao, B. Ai, Y. Niu, W. Wu, P. Yang, F. Lyu, and X. Shen, “Efficient hybrid beamforming with anti-blockage design for high-speed railway communications,” IEEE Trans. Veh. Technol., vol. 69, no. 9, pp. 9643–9655, Sept. 2020.
  8. W.-T. Shih, C.-K. Wen, S.-H. Tsai, and S. Jin, “Fast antenna and beam switching method for mmWave handsets with hand blockage,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 8134–8148, Dec. 2021.
  9. J. Zhang, Y. Huang, J. Wang, X. You, and C. Masouros, “Intelligent interactive beam training for millimeter wave communications,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 2034–2048, 2021.
  10. D. Zhu, J. Choi, and R. W. Heath, “Auxiliary beam pair enabled AoD and AoA estimation in closed-loop large-scale millimeter-wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4770–4785, 2017.
  11. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.
  12. S. Jeong, O. Simeone, A. Haimovich, and J. Kang, “Beamforming design for joint localization and data transmission in distributed antenna system,” IEEE Trans. Veh. Technol., vol. 64, no. 1, pp. 62–76, Jan. 2015.
  13. S. Jeong, O. Simeone, and J. Kang, “Optimization of massive full-dimensional MIMO for positioning and communication,” IEEE Trans. Wireless Commun., vol. 17, no. 9, pp. 6205–6217, Sept. 2018.
  14. G. Ghatak, R. Koirala, A. De Domenico, B. Denis, D. Dardari, and B. Uguen, “Positioning data-rate trade-off in mm-wave small cells and service differentiation for 5G networks,” in Proc. IEEE 87th Veh. Technol. Conf., Jun. 2018, pp. 1–5.
  15. G. Kwon, A. Conti, H. Park, and M. Z. Win, “Joint communication and localization in millimeter wave networks,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1439–1454, Nov. 2021.
  16. B. Zhou, A. Liu, and V. Lau, “Successive localization and beamforming in 5G mmWave MIMO communication systems,” IEEE Trans. Signal Process., vol. 67, no. 6, pp. 1620–1635, Mar. 2019.
  17. F. Maschietti, D. Gesbert, P. de Kerret, and H. Wymeersch, “Robust location-aided beam alignment in millimeter wave massive MIMO,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2017, pp. 1–6.
  18. I. Orikumhi, J. Kang, C. Park, J. Yang, and S. Kim, “Location-aware coordinated beam alignment in mmWave communication,” in Proc. 56th Annual Allerton Conf. Commun., Control, and Comput. (Allerton), Oct. 2018, pp. 386–390.
  19. Y. Wang, M. Narasimha, and R. W. Heath, “Mmwave beam prediction with situational awareness: A machine learning approach,” in Proc. IEEE SPAWC, Jun. 2018, pp. 1–5.
  20. I. Orikumhi, J. Kang, and S. Kim, “Location-aided window based beam alignment for mmWave communications,” in Proc. IEEE IC-NIDC, Nov. 2021, pp. 215–219.
  21. R. Wang, P. V. Klaine, O. Onireti, Y. Sun, M. A. Imran, and L. Zhang, “Deep learning enabled beam tracking for non-line of sight millimeter wave communications,” IEEE Open J. Commun. Soc., vol. 2, pp. 1710–1720, Jul. 2021.
  22. R. Mendrzik, F. Meyer, G. Bauch, and M. Z. Win, “Enabling situational awareness in millimeter wave massive MIMO systems,” IEEE J. Sel. Topics Signal Processing, vol. 13, no. 5, pp. 1196–1211, Sept. 2019.
  23. E. Leitinger, P. Meissner, C. Rüdisser, G. Dumphart, and K. Witrisal, “Evaluation of position-related information in multipath components for indoor positioning,” IEEE J. Sel. Areas Commun., vol. 33, no. 11, pp. 2313–2328, Nov. 2015.
  24. K. Witrisal et al., “High-accuracy localization for assisted living: 5G systems will turn multipath channels from foe to friend,” IEEE Signal Process. Mag., vol. 33, no. 2, pp. 59–70, Mar. 2016.
  25. F. Guidi, A. Guerra, and D. Dardari, “Personal mobile radars with millimeter-wave massive arrays for indoor mapping,” IEEE Trans. Mobile Comput., vol. 15, no. 6, pp. 1471–1484, Jun. 2016.
  26. A. Guerra, F. Guidi, J. Dall’Ara, and D. Dardari, “Occupancy grid mapping for personal radar applications,” in Proc. IEEE SSP, Jun. 2018, pp. 766–770.
  27. C. Gentner, T. Jost, W. Wang, S. Zhang, A. Dammann, and U.-C. Fiebig, “Multipath assisted positioning with simultaneous localization and mapping,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 6104–6117, Sept. 2016.
  28. E. Leitinger, F. Meyer, F. Hlawatsch, K. Witrisal, F. Tufvesson, and M. Z. Win, “A belief propagation algorithm for multipath-based SLAM,” IEEE Trans. Wireless Commun., vol. 18, no. 12, pp. 5613–5629, Dec. 2019.
  29. A. Guerra, F. Guidi, and D. Dardari, “Single-anchor localization and orientation performance limits using massive arrays: MIMO vs. beamforming,” IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 5241–5255, Aug. 2018.
  30. Z. Abu-Shaban, H. Wymeersch, T. Abhayapala, and G. Seco-Granados, “Single-anchor two-way localization bounds for 5G mmWave systems,” IEEE Trans. Veh. Technol., vol. 69, no. 6, pp. 6388–6400, Jun. 2020.
  31. J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors,” Matrix, vol. 58, no. 15-16, pp. 1–35, Oct. 2006.
  32. M. Giordani, M. Mezzavilla, C. N. Barati, S. Rangan, and M. Zorzi, “Comparative analysis of initial access techniques in 5G mmwave cellular networks,” in Proc. Annu. Conf. Inf. Sci. Syst. (CISS), 2016, pp. 268–273.
  33. M. Giordani, M. Mezzavilla, and M. Zorzi, “Initial access in 5G mmwave cellular networks,” IEEE Commun. Mag., vol. 54, no. 11, pp. 40–47, 2016.
  34. X. Lin et al., “5G new radio: Unveiling the essentials of the next generation wireless access technology,” IEEE Commun. Mag., vol. 3, no. 3, pp. 30–37, 2019.
  35. M. Giordani and M. Zorzi, “Improved user tracking in 5G millimeter wave mobile networks via refinement operations,” in Proc. 16th Annu. Mediterr. Ad Hoc Netw. Workshop (Med-Hoc-Net), 2017, pp. 1–8.
  36. M. Polese, M. Giordani, M. Mezzavilla, S. Rangan, and M. Zorzi, “Improved handover through dual connectivity in 5G mmwave mobile networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 2069–2084, 2017.
  37. B. Mamandipoor, D. Ramasamy, and U. Madhow, “Newtonized orthogonal matching pursuit: Frequency estimation over the continuum,” IEEE Trans. Signal Process., vol. 64, no. 19, pp. 5066–5081, Oct. 2016.
  38. R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, Mar. 1986.
  39. F. Fernandes, C. Rom, J. Harrebek, S. Svendsen, and C. N. Manchón, “Hand blockage impact on 5G mmwave beam management performance,” IEEE Access, vol. 10, pp. 106 033–106 049, Oct. 2022.
  40. P. Stoica and B. C. Ng, “On the cramér-rao bound under parametric constraints,” IEEE Signal Process. Lett., vol. 5, no. 7, pp. 177–179, Jul. 1998.
  41. M. Z. Win, Y. Shen, and W. Dai, “A theoretical foundation of network localization and navigation,” Proc. IEEE, vol. 106, no. 7, pp. 1136–1165, Jul. 2018.
  42. Remcom, “Wireless insite - 3D wireless prediction software,” 2021.

Summary

We haven't generated a summary for this paper yet.