Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Assessing Compliant Robotic Grasping from First-Object Perspective via Instrumented Objects (2312.14466v2)

Published 22 Dec 2023 in cs.RO

Abstract: Grasping compliant objects is difficult for robots - applying too little force may cause the grasp to fail, while too much force may lead to object damage. A robot needs to apply the right amount of force to quickly and confidently grasp the objects so that it can perform the required task. Although some methods have been proposed to tackle this issue, performance assessment is still a problem for directly measuring object property changes and possible damage. To fill the gap, a new concept is introduced in this paper to assess compliant robotic grasping using instrumented objects. A proof-of-concept design is proposed to measure the force applied on a cuboid object from a first-object perspective. The design can detect multiple contact locations and applied forces on its surface by using multiple embedded 3D Hall sensors to detect deformation relative to embedded magnets. The contact estimation is achieved by interpreting the Hall-effect signals using neural networks. In comprehensive experiments, the design achieved good performance in estimating contacts from each single face of the cuboid and decent performance in detecting contacts from multiple faces when being used to evaluate grasping from a parallel jaw gripper, demonstrating the effectiveness of the design and the feasibility of the concept.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. N. Navarro-Guerrero, S. Toprak, J. Josifovski, and L. Jamone, “Visuo-haptic object perception for robots: An overview,” arXiv preprint arXiv:2203.11544, 2022.
  2. N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft, P. Abbeel, W. Burgard, M. Milford, and P. Corke, “The limits and potentials of deep learning for robotics,” The International Journal of Robotics Research (IJRR), vol. 37, no. 4-5, pp. 405–420, 2018.
  3. A. Delgado, C. A. Jara, D. Mira, and F. Torres, “A tactile-based grasping strategy for deformable objects’ manipulation and deformability estimation,” in 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), vol. 2.   IEEE, 2015, pp. 369–374.
  4. M. Kaboli, K. Yao, and G. Cheng, “Tactile-based manipulation of deformable objects with dynamic center of mass,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).   IEEE, 2016, pp. 752–757.
  5. F. R. Hogan, M. Bauza, O. Canal, E. Donlon, and A. Rodriguez, “Tactile regrasp: Grasp adjustments via simulated tactile transformations,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 2963–2970.
  6. J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Robotic manipulation and sensing of deformable objects in domestic and industrial applications: a survey,” The International Journal of Robotics Research, vol. 37, no. 7, pp. 688–716, 2018.
  7. A. Billard and D. Kragic, “Trends and challenges in robot manipulation,” Science, vol. 364, no. 6446, p. eaat8414, 2019.
  8. D. S. Chathuranga, Z. Wang, Y. Noh, T. Nanayakkara, and S. Hirai, “Magnetic and mechanical modeling of a soft three-axis force sensor,” IEEE Sensors Journal, vol. 16, no. 13, pp. 5298–5307, 2016.
  9. S. Zhang, Z. Chen, Y. Gao, W. Wan, J. Shan, H. Xue, F. Sun, Y. Yang, and B. Fang, “Hardware technology of vision-based tactile sensor: A review,” IEEE Sensors Journal, vol. 22, no. 22, pp. 21 410–21 427, 2022.
  10. S. Groß, D. Hidalgo-Carvajal, S. Breimann, N. Stein, A. Ganguly, A. Naceri, and S. Haddadin, “Soft sensing skins for arbitrary objects: An automatic framework,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 12 507–12 513.
  11. H. R. Nicholls and M. H. Lee, “A survey of robot tactile sensing technology,” The International Journal of Robotics Research, vol. 8, no. 3, pp. 3–30, 1989. [Online]. Available: https://doi.org/10.1177/027836498900800301
  12. S. Luo, J. Bimbo, R. Dahiya, and H. Liu, “Robotic tactile perception of object properties: A review,” Mechatronics, vol. 48, pp. 54–67, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0957415817301575
  13. Z. Xie, X. Liang, and C. Roberto, “Learning-based robotic grasping: A review,” Frontiers in Robotics and AI, vol. 10, p. 1038658, 2023.
  14. D. S. Chathuranga, Z. Wang, Y. Noh, T. Nanayakkara, and S. Hirai, “A soft three axis force sensor useful for robot grippers,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2016, pp. 5556–5563.
  15. T. Paulino, P. Ribeiro, M. Neto, S. Cardoso, A. Schmitz, J. Santos-Victor, A. Bernardino, and L. Jamone, “Low-cost 3-axis soft tactile sensors for the human-friendly robot vizzy,” in 2017 IEEE international conference on robotics and automation (ICRA).   IEEE, 2017, pp. 966–971.
  16. S. Youssefian, N. Rahbar, and E. Torres-Jara, “Contact behavior of soft spherical tactile sensors,” IEEE sensors Journal, vol. 14, no. 5, pp. 1435–1442, 2013.
  17. O. Talcoth and T. Rylander, “Optimization of sensor positions in magnetic tracking,” Chalmers University of Technology, Tech. Rep., 2011.
  18. K. Fukushima, “Cognitron: A self-organizing multilayered neural network,” Biological cybernetics, vol. 20, no. 3-4, pp. 121–136, 1975.
Citations (1)

Summary

We haven't generated a summary for this paper yet.