Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On eigenvalues of sample covariance matrices based on high dimensional compositional data (2312.14420v1)

Published 22 Dec 2023 in math.ST, stat.ME, and stat.TH

Abstract: This paper studies the asymptotic spectral properties of the sample covariance matrix for high dimensional compositional data, including the limiting spectral distribution, the limit of extreme eigenvalues, and the central limit theorem for linear spectral statistics. All asymptotic results are derived under the high-dimensional regime where the data dimension increases to infinity proportionally with the sample size. The findings reveal that the limiting spectral distribution is the well-known Marchenko-Pastur law. The largest (or smallest non-zero) eigenvalue converges almost surely to the left (or right) endpoint of the limiting spectral distribution, respectively. Moreover, the linear spectral statistics demonstrate a Gaussian limit. Simulation experiments demonstrate the accuracy of theoretical results.

Summary

We haven't generated a summary for this paper yet.