Critical quantum geometric tensors of parametrically-driven nonlinear resonators (2312.14414v1)
Abstract: Parametrically driven nonlinear resonators represent a building block for realizing fault-tolerant quantum computation and are useful for critical quantum sensing. From a fundamental viewpoint, the most intriguing feature of such a system is perhaps the critical phenomena, which can occur without interaction with any other quantum system. The non-analytic behaviors of its eigenspectrum have been substantially investigated, but those associated with the ground state wavefunction have largely remained unexplored. Using the quantum ground state geometric tensor as an indicator, we comprehensively establish a phase diagram involving the driving parameter $\varepsilon$ and phase $\phi$. The results reveal that with the increase in $\varepsilon$, the system undergoes a quantum phase transition from the normal to the superradiant phase, with the critical point unaffected by $\phi$. Furthermore, the critical exponent and scaling dimension are obtained by an exact numerical method, which is consistent with previous works. Our numerical results show that the phase transition falls within the universality class of the quantum Rabi model. This work reveals that the quantum metric and Berry curvature display diverging behaviors across the quantum phase transition.
- S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 2011).
- W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a quantum phase transition, Phys. Rev. Lett. 95, 105701 (2005).
- J. Cardy, Scaling and renormalization in statistical physics, Vol. 5 (Cambridge university press, 1996).
- S. Sachdev, Quantum Phases of Matter (Cambridge University Press, 2023).
- C. Xu, Unconventional quantum critical points, International Journal of Modern Physics B 26, 1230007 (2012).
- J. A. Hertz, Quantum critical phenomena, Phys. Rev. B 14, 1165 (1976).
- P. Coleman and A. J. Schofield, Quantum criticality, Nature 433, 226 (2005).
- S. Ashhab, Superradiance transition in a system with a single qubit and a single oscillator, Phys. Rev. A 87, 013826 (2013).
- M.-J. Hwang, R. Puebla, and M. B. Plenio, Quantum phase transition and universal dynamics in the rabi model, Phys. Rev. Lett. 115, 180404 (2015).
- E. Grigoriou and C. Navarrete-Benlloch, Signatures of a quantum phase transition on a single-mode bosonic model (2023), arXiv:2303.12894 .
- Q.-W. Wang and S. Wu, Excited-state quantum phase transitions in kerr nonlinear oscillators, Phys. Rev. A 102, 063531 (2020).
- H. Goto, Universal quantum computation with a nonlinear oscillator network, Phys. Rev. A 93, 050301 (2016).
- S. Puri, S. Boutin, and A. Blais, Engineering the quantum states of light in a kerr-nonlinear resonator by two-photon driving, npj Quantum Inf 3, 18 (2017).
- L. Gravina, F. Minganti, and V. Savona, Critical schrödinger cat qubit, PRX Quantum 4, 020337 (2023).
- P. Zanardi, P. Giorda, and M. Cozzini, Information-theoretic differential geometry of quantum phase transitions, Phys. Rev. Lett. 99, 100603 (2007).
- X.-J. Yu, C. Ding, and L. Xu, Quantum criticality of a 𝕫3subscript𝕫3{\mathbb{z}}_{3}blackboard_z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT-symmetric spin chain with long-range interactions, Phys. Rev. E 107, 054122 (2023).
- M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392, 45 (1984).
- S.-L. Zhu, Scaling of geometric phases close to the quantum phase transition in the xy𝑥𝑦xyitalic_x italic_y spin chain, Phys. Rev. Lett. 96, 077206 (2006).
- A. Hamma, Berry phases and quantum phase transitions (2006), arXiv:quant-ph/0602091 .
- B.-B. Wei and X.-C. Lv, Fidelity susceptibility in the quantum rabi model, Phys. Rev. A 97, 013845 (2018).
- N. Coldenfeld, Lectures on phase transitions and the renormalization group (Lectures on Phase Transitions and the Renormalization Group, 2018).
- L.-S. Lin, H.-L. Zhang, and Z.-B. Yang, Method for the quantum metric tensor measurement in a continuous variable system, Photonics 10, 256 (2023).
- L. Campos Venuti and P. Zanardi, Quantum critical scaling of the geometric tensors, Phys. Rev. Lett. 99, 095701 (2007).
- A. W. Sandvik, Computational Studies of Quantum Spin Systems, AIP Conf. Proc. 1297, 135 (2010).
- E. J. König, A. Levchenko, and N. Sedlmayr, Universal fidelity near quantum and topological phase transitions in finite one-dimensional systems, Phys. Rev. B 93, 235160 (2016).
- S.-J. Gu and W. C. Yu, Spectral function and fidelity susceptibility in quantum critical phenomena, Europhysics Letters 108, 20002 (2014).
- S.-J. Gu, Fidelity approach to quantum phase transitions, Int. J. Mod. Phys. B 24, 4371 (2010).
- S.-J. Gu and H.-Q. Lin, Scaling dimension of fidelity susceptibility in quantum phase transitions, Europhysics Letters 87, 10003 (2009).