Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GreenScan: Towards large-scale terrestrial monitoring the health of urban trees using mobile sensing (2312.14364v2)

Published 22 Dec 2023 in eess.SY and cs.SY

Abstract: Healthy urban greenery is a fundamental asset to mitigate climate change phenomena such as extreme heat and air pollution. However, urban trees are often affected by abiotic and biotic stressors that hamper their functionality, and whenever not timely managed, even their survival. While the current greenery inspection techniques can help in taking effective measures, they often require a high amount of human labor, making frequent assessments infeasible at city-wide scales. In this paper, we present GreenScan, a ground-based sensing system designed to provide health assessments of urban trees at high spatio-temporal resolutions, with low costs. The system utilises thermal and multi-spectral imaging sensors fused using a custom computer vision model in order to estimate two tree health indexes. The evaluation of the system was performed through data collection experiments in Cambridge, USA. Overall, this work illustrates a novel approach for autonomous mobile ground-based tree health monitoring on city-wide scales at high temporal resolutions with low-costs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. “Climate change 2022: Impacts, adaptation and vulnerability.” [Online]. Available: https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/
  2. E. Gregory McPherson, “Accounting for benefits and costs of urban greenspace,” Landscape and Urban Planning, vol. 22, no. 1, pp. 41–51, 1992. [Online]. Available: https://www.sciencedirect.com/science/article/pii/016920469290006L
  3. S. E. Hobbie and N. B. Grimm, “Nature-based approaches to managing climate change impacts in cities,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 375, no. 1794, p. 20190124, jan 2020. [Online]. Available: https://doi.org/10.1098\%2Frstb.2019.0124
  4. N. Grimm, S. Faeth, N. Golubiewski, C. Redman, J. Wu, X. Bai, and J. Briggs, “Global change and the ecology of cities,” Science (New York, N.Y.), vol. 319, pp. 756–60, 03 2008.
  5. S. A. Nitoslawski, N. J. Galle, C. C. K. van den Bosch, and J. W. N. Steenberg, “Smarter ecosystems for smarter cities? a review of trends, technologies, and turning points for smart urban forestry,” Sustainable Cities and Society, 2019.
  6. Z. R. Werbin, L. Heidari, S. Buckley, P. Brochu, L. J. Butler, C. Connolly, L. Houttuijn Bloemendaal, T. D. McCabe, T. K. Miller, and L. R. Hutyra, “A tree-planting decision support tool for urban heat mitigation,” PLOS ONE, vol. 15, no. 10, pp. 1–13, 10 2020. [Online]. Available: https://doi.org/10.1371/journal.pone.0224959
  7. K. L. Hand and K. J. Doick, “Understanding the role of urban tree management on ecosystem services.” [Online]. Available: https://www.forestresearch.gov.uk/research/understanding-role-urban-tree-management-ecosystem-services/
  8. D. R. Hilbert, L. A. Roman, A. K. Koeser, J. Vogt, and N. S. van Doorn, “Urban tree mortality: A literature review,” Arboriculture & Urban Forestry (AUF), vol. 45, no. 5, pp. 167–200, 2019. [Online]. Available: https://auf.isa-arbor.com/content/45/5/167
  9. K. Huang, “Urban forests facing climate risks,” Nature Climate Change, vol. 12, no. 10, pp. 893–894, 2022.
  10. E. Leong, D. Burcham, and Y. Fong, “A purposeful classification of tree decay detection tools,” Arboricultural Journal, vol. 34, 06 2012.
  11. A. Gupta, S. Mora, Y. Preisler, F. Duarte, V. Prasad, and C. Ratti, “Tools and methods for monitoring the health of the urban greenery,” Nature Sustainability, 2024. [Online]. Available: https://doi.org/10.1038/s41893-024-01295-w
  12. S. Fuentes, E. J. Tongson, and C. G. Viejo, “Urban green infrastructure monitoring using remote sensing from integrated visible and thermal infrared cameras mounted on a moving vehicle,” Sensors, 2021. [Online]. Available: https://doi.org/10.3390/s21010295
  13. X. Li, C. Zhang, W. Li, R. Ricard, Q. Meng, and W. Zhang, “Assessing street-level urban greenery using google street view and a modified green view index,” Urban Forestry & Urban Greening, vol. 14, no. 3, pp. 675–685, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1618866715000874
  14. “Cambridge urban forest master plan preliminary report.” [Online]. Available: \{https://www.cambridgema.gov/-/media/Files/publicworksdepartment/urbanforestmasterplan/techncialre-portappendix.pdf
  15. N. H. Wong, T. Tan, D. Kolokotsa, and H. Takebayashi, “Greenery as a mitigation and adaptation strategy to urban heat,” Nature Reviews Earth & Environment, vol. 2, 01 2021.
  16. X. Li, C. Zhang, W. Li, R. M. Ricard, Q. Meng, and W. Zhang, “Assessing street-level urban greenery using google street view and a modified green view index,” Urban Forestry & Urban Greening, vol. 14, pp. 675–685, 2015.
  17. I. Seiferling, N. Naik, C. Ratti, and R. Proulx, “Green streets: Quantifying and mapping urban trees with street-level imagery and computer vision,” Landscape and Urban Planning, vol. 165, pp. 93–101, 09 2017.
  18. A. Anjomshoaa, F. Duarte, D. Rennings, T. J. Matarazzo, P. Desouza, and C. Ratti, “City Scanner: Building and Scheduling a Mobile Sensing Platform for Smart City Services,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4567–4579, 2018.
  19. S. Mora, A. Anjomshoaa, T. Benson, F. Duarte, and C. Ratti, “Towards large-scale drive-by sensing with multi-purpose city scanner nodes,” in 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 2019, pp. 743–748.
  20. K. P. O’Keeffe, A. Anjomshoaa, S. H. Strogatz, P. Santi, and C. Ratti, “Quantifying the sensing power of vehicle fleets,” Proceedings of the National Academy of Sciences, vol. 116, no. 26, pp. 12 752–12 757, 2019. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.1821667116
  21. J. Silvertown, “A new dawn for citizen science,” Trends in Ecology & Evolution, vol. 24, no. 9, pp. 467–471, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S016953470900175X
  22. C. Ordóñez and P. Duinker, “Assessing the vulnerability of urban forests to climate change,” Environmental Reviews, vol. 22, no. 3, pp. 311–321, 2014. [Online]. Available: http://www.jstor.org/stable/envirevi.22.3.311
  23. I. Potamitis, I. Rigakis, N.-A. Tatlas, and S. Potirakis, “In-vivo vibroacoustic surveillance of trees in the context of the iot,” Sensors, vol. 19, no. 6, 2019. [Online]. Available: https://doi.org/10.3390/s19061366
  24. E. Borges, M. Sequeira, A. Cortez, H. C. Pereira, T. Pereira, V. Almeida, J. Cardoso, T. M. Vasconcelos, I. Duarte, and N. Nazaré, “Bioimpedance parameters as indicators of the physiological states of plants in situ a novel usage of the electrical impedance spectroscopy technique,” International Journal on Advances in Life Sciences, vol. 6, pp. 74 – 6, 01 2014.
  25. C. Torresan, M. Benito Garzón, M. O’Grady, T. M. Robson, G. Picchi, P. Panzacchi, E. Tomelleri, M. Smith, J. Marshall, L. Wingate, R. Tognetti, L. E. Rustad, and D. Kneeshaw, “A new generation of sensors and monitoring tools to support climate-smart forestry practices,” Canadian Journal of Forest Research, vol. 0, no. 0, pp. 1–15, 0. [Online]. Available: https://doi.org/10.1139/cjfr-2020-0295
  26. A. Catena and G. Catena, “Overview of thermal imaging for tree assessment,” Arboricultural Journal, vol. 30, 03 2008. [Online]. Available: https://doi.org/10.1080/03071375.2008.9747505
  27. R. Pitarma, J. Crisóstomo, and M. E. Ferreira, “Contribution to trees health assessment using infrared thermography,” Agriculture, vol. 9, no. 8, 2019. [Online]. Available: https://www.mdpi.com/2077-0472/9/8/171
  28. M. Smigaj, R. Gaulton, S. Barr, and J. Suarez Minguez, “Uav-borne thermal imaging for forest health monitoring: Detection of disease-induced canopy temperature increase,” ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. Xl-3/w3, pp. 349–354, 08 2015.
  29. A. Majdak, R. Jakus, and M. Blazenec, “Determination of differences in temperature regimes on healthy and bark-beetle colonised spruce trees using a handheld thermal camera,” iForest - Biogeosciences and Forestry, no. 3, pp. 203–211, 2021. [Online]. Available: https://iforest.sisef.org/contents/?id=ifor3531-014
  30. A. Lausch, S. Erasmi, D. J. King, P. Magdon, and M. Heurich, “Understanding forest health with remote sensing -part i—a review of spectral traits, processes and remote-sensing characteristics,” Remote Sensing, 2016. [Online]. Available: https://doi.org/10.3390/rs8121029
  31. L. Wang, Y. Duan, L. Zhang, T. U. Rehman, D. Ma, and J. Jin, “Precise estimation of ndvi with a simple nir sensitive rgb camera and machine learning methods for corn plants,” Sensors, vol. 20, no. 11, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/11/3208
  32. S. Huang, L. Tang, J. Hupy, Y. Wang, and G. Shao, “A commentary review on the use of normalized difference vegetation index (ndvi) in the era of popular remote sensing,” Journal of Forestry Research, vol. 32, 05 2020.
  33. J. Degerickx, D. Roberts, J. McFadden, M. Hermy, and B. Somers, “Urban tree health assessment using airborne hyperspectral and lidar imagery,” International Journal of Applied Earth Observation and Geoinformation, vol. 73, pp. 26–38, 2018. [Online]. Available: https://doi.org/10.1016/j.jag.2018.05.021
  34. S. Rosli, F. Hashim, T. Raj, W. M. D. W Zaki, and A. Hussain, “A rapid technique in evaluating tree health using lidar sensors,” International Journal of Engineering and Technology(UAE), vol. 7, pp. 118–122, 08 2018.
  35. J. Wu, W. Yao, and P. Polewski, “Mapping individual tree species and vitality along urban road corridors with lidar and imaging sensors: Point density versus view perspective,” Remote Sensing, vol. 10, no. 9, 2018. [Online]. Available: https://www.mdpi.com/2072-4292/10/9/1403
  36. C. Wei, Meng, W. Zhiwei, Z. Yong, and Y. Jaemo, “Evaluating greenery around streets using baidu panoramic street view images and the panoramic green view index,” Forests, vol. 10, p. 1109, 12 2019.
  37. S. Branson, J. D. Wegner, D. Hall, N. Lang, K. Schindler, and P. Perona, “From google maps to a fine-grained catalog of street trees,” CoRR, vol. abs/1910.02675, 2019. [Online]. Available: http://arxiv.org/abs/1910.02675
  38. X. Li, C. Ratti, and I. Seiferling, “Quantifying the shade provision of street trees in urban landscape: A case study in boston, usa, using google street view,” Landscape and Urban Planning, vol. 169, pp. 81–91, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169204617301950
  39. J. Y. Kim and D. M. Glenn, “Multi-modal sensor system for plant water stress assessment,” Computers and Electronics in Agriculture, vol. 141, pp. 27–34, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168169916311073
  40. C. Kwok, M. Wong, H. Li, K. Hui, F. Ko, H. Shiu, and Z. Kan, “Detection of structural tree defects using thermal infrared imaging,” in 40th Asian Conference on Remote Sensing: Progress of Remote Sensing Technology for Smart Future, ACRS 2019, 2020.
  41. M. Jiménez-Bello, C. Ballester, J. Castel, and D. Intrigliolo, “Development and validation of an automatic thermal imaging process for assessing plant water status,” Agricultural Water Management, vol. 98, pp. 1497–1504, 08 2011.
  42. R. Vidoni, R. Gallo, G. Ristorto, G. Carabin, F. Mazzetto, L. Scalera, and A. Gasparetto, “Byelab: An agricultural mobile robot prototype for proximal sensing and precision farming,” 11 2017, p. V04at05a057.
  43. S. B. Lepekhov, “Canopy temperature depression for drought- and heat stress tolerance in wheat breeding,” Vavilovskii Zhurnal Genet. Selektsii, vol. 26, no. 2, pp. 196–201, Mar. 2022.
  44. C. Ballester, M. A. Jiménez-Bello, J. R. Castel, and D. S. Intrigliolo, “Usefulness of thermography for plant water stress detection in citrus and persimmon trees,” Agricultural and Forest Meteorology, vol. 168, pp. 120–129, 2013.
  45. M. Bietresato, G. Carabin, D. D’Auria, R. Gallo, G. Ristorto, F. Mazzetto, R. Vidoni, A. Gasparetto, and L. Scalera, “A tracked mobile robotic lab for monitoring the plants volume and health,” in 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), 2016, pp. 1–6.
  46. E. Kamoun, “Image registration: From sift to deep learning,” Mar 2021. [Online]. Available: https://www.sicara.ai/blog/2019-07-16-image-registration-deep-learning
  47. “Opencv: Feature detection and description.” [Online]. Available: https://docs.opencv.org/3.4/db/d27/tutorial\_py\_table\_of\_contents\_feature2d.html
  48. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” Jan 2018. [Online]. Available: https://arxiv.org/abs/1703.06870
  49. “Dynamic range in digital photography.” [Online]. Available: https://www.cambridgeincolour.com/tutorials/dynamic-range.htm
  50. L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image segmentation,” Dec 2017. [Online]. Available: https://arxiv.org/abs/1706.05587
  51. Wkentaro, “Wkentaro/labelme: Image polygonal annotation with python (polygon, rectangle, circle, line, point and image-level flag annotation).” [Online]. Available: https://github.com/wkentaro/labelme
  52. W. Abdulla, “Mask r-cnn for object detection and instance segmentation on keras and tensorflow,” https://github.com/matterport/Mask\_RCNN, 2017.
  53. “Common objects in context.” [Online]. Available: https://cocodataset.org/#home
  54. “Post-training quantization tensorflow lite.” [Online]. Available: https://www.tensorflow.org/lite/performance/post\_training\_quantization
  55. Carto, “Location intelligence & gis for cloud natives.” [Online]. Available: https://carto.com/
  56. “Common objects in context evaluation metrics.” [Online]. Available: https://cocodataset.org/#detection-eval
  57. J. Brownlee, “A gentle introduction to k-fold cross-validation.” [Online]. Available: https://machinelearningmastery.com/k-fold-cross-validation/
  58. J. Martin Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The Lancet, vol. 327, no. 8476, pp. 307–310, 1986, originally published as Volume 1, Issue 8476. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0140673686908378
  59. A. Cogato, V. Pagay, F. Marinello, F. Meggio, P. Grace, M. De, and M. Migliorati, “Assessing the feasibility of using sentinel-2 imagery to quantify the impact of heatwaves on irrigated vineyards,” Remote Sensing, vol. 11, pp. 1–19, 12 2019.
  60. J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, pp. 189–215, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231220307153
  61. J. Peng, K. Lee, and G. Ingersoll, “An introduction to logistic regression analysis and reporting,” Journal of Educational Research - J EDUC RES, vol. 96, pp. 3–14, 09 2002.
Citations (1)

Summary

We haven't generated a summary for this paper yet.