Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An unfitted high-order HDG method for two-fluid Stokes flow with exact NURBS geometries (2312.14328v2)

Published 21 Dec 2023 in math.NA, cs.CE, cs.NA, physics.comp-ph, and physics.flu-dyn

Abstract: A high-order, degree-adaptive hybridizable discontinuous Galerkin (HDG) method is presented for two-fluid incompressible Stokes flows, with boundaries and interfaces described using NURBS. The NURBS curves are embedded in a fixed Cartesian grid, yielding an unfitted HDG scheme capable of treating the exact geometry of the boundaries/interfaces, circumventing the need for fitted, high-order, curved meshes. The framework of the NURBS-enhanced finite element method (NEFEM) is employed for accurate quadrature along immersed NURBS and in elements cut by NURBS curves. A Nitsche's formulation is used to enforce Dirichlet conditions on embedded surfaces, yielding unknowns only on the mesh skeleton as in standard HDG, without introducing any additional degree of freedom on non-matching boundaries/interfaces. The resulting unfitted HDG-NEFEM method combines non-conforming meshes, exact NURBS geometry and high-order approximations to provide high-fidelity results on coarse meshes, independent of the geometric features of the domain. Numerical examples illustrate the optimal accuracy and robustness of the method, even in the presence of badly cut cells or faces, and its suitability to simulate microfluidic systems from CAD geometries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (96)
  1. S. Gross and A. Reusken. Numerical methods for two-phase incompressible flows, volume 40. Springer Science & Business Media, 2011.
  2. Hierarchical X-FEM for n𝑛nitalic_n-phase flow (n>2𝑛2n>2italic_n > 2). Comput. Methods Appl. Mech. Eng., 198(30-32):2329–2338, 2009.
  3. An unfitted interior penalty discontinuous Galerkin method for incompressible Navier-Stokes two-phase flow. Int. J. Numer. Methods Fluids, 71(3):269–293, 2013.
  4. High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids, 72(8):811–845, jan 2013.
  5. A hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media. Int. J. Numer. Methods Eng., 116(3):161–177, 2018.
  6. An HDG formulation for incompressible and immiscible two-phase porous media flow problems. Int. J. Comput. Fluid Dyn., 33(4):137–148, 2019.
  7. To CG or to HDG: A comparative study. J. Sci. Comput., 51(1):183–212, 2011.
  8. Efficiency of high-order elements for continuous and discontinuous Galerkin methods. Int. J. Numer. Methods Eng., 96(9):529–560, 2013.
  9. A comparison of hybridized and standard DG methods for target-based h⁢pℎ𝑝hpitalic_h italic_p-adaptive simulation of compressible flow. Comput. Fluids, 98:3 – 16, 2014.
  10. F. Bassi and S. Rebay. High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys., 138(2):251–285, 1997.
  11. NURBS-enhanced finite element method for Euler equations. Int. J. Numer. Methods Fluids, 57(9):1051–1069, 2008.
  12. NURBS-enhanced finite element method (NEFEM). Int. J. Numer. Methods Eng., 76(1):56–83, 2008.
  13. 3D NURBS-enhanced finite element method (NEFEM). Int. J. Numer. Methods Eng., 88(2):103–125, 2011.
  14. The generation of triangular meshes for NURBS-enhanced FEM. Int. J. Numer. Methods Eng., 108(8):941–968, 2016.
  15. The generation of 3D surface meshes for NURBS-Enhanced FEM. Comput. Aided Des., page 103653, 2023.
  16. R. Mittal and G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech., 37:239–261, 2005.
  17. Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal., 7(3):283–300, 1987.
  18. An unfitted finite element method, based on Nitsche’s method for elliptic interface problems. Comput. Methods Appl. Mech. Eng., 191(47-48):5537–5552, 2002.
  19. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng., 193(33-35):3523–3540, 2004.
  20. A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng., 111(3-4):283–303, 1994.
  21. A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations. Comput. Methods Appl. Mech. Eng., 112(1-4):133–148, 1994.
  22. Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput. Methods Appl. Mech. Eng., 199(41-44):2680–2686, 2010.
  23. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math., 62(4):328–341, 2012.
  24. CutFEM: Discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng., 104(7):472–501, 2015.
  25. C. Gürkan and A. Massing. A stabilized cut discontinuous Galerkin framework for elliptic boundary value and interface problems. Comput. Methods Appl. Mech. Eng., 348:466–499, 2019.
  26. Finite cell method: h-and p-extension for embedded domain problems in solid mechanics. Comput. Mech., 41(1):121–133, 2007.
  27. The aggregated unfitted finite element method for elliptic problems. Comput. Methods Appl. Mech. Eng., 336:533–553, 2018.
  28. The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. J. Comput. Phys., 372:972–995, 2018.
  29. Condition number analysis and preconditioning of the finite cell method. Comput. Methods Appl. Mech. Eng., 316:297–327, 2017.
  30. Erik Burman. Ghost penalty. C. R. Math., 348(21-22):1217–1220, 2010.
  31. A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary. Numer. Math., 123(4):607–628, 2013.
  32. High-order discontinuous Galerkin method for time-domain electromagnetics on geometry-independent Cartesian meshes. Int. J. Numer. Methods Eng., 122(24):7632–7663, 2021.
  33. CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng., 104(7):472–501, 2015.
  34. Stability and conditioning of immersed finite element methods: analysis and remedies. Arch. Comput. Methods Eng., pages 1–40, 2023.
  35. D. Schillinger and M. Ruess. The Finite Cell Method: A review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch. Comput. Methods Eng., 22:391–455, 2015.
  36. Christoph Lehrenfeld. High order unfitted finite element methods on level set domains using isoparametric mappings. Comput. Methods Appl. Mech. Eng., 300:716–733, 2016.
  37. A high-order discontinuous Galerkin method for compressible flows with immersed boundaries. Int. J. Numer. Methods Eng., 110(1):3–30, 2017.
  38. M.G. Larson and S. Zahedi. Stabilization of high order cut finite element methods on surfaces. IMA J. Numer. Anal., 40(3):1702–1745, 2020.
  39. The high-order Shifted Boundary Method and its analysis. Comput. Methods Appl. Mech. Eng., 394:114885, 2022.
  40. Robust high-order unfitted finite elements by interpolation-based discrete extension. Comput. Math. Appl., 127:105–126, 2022.
  41. D. Schillinger and E. Rank. An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput. Methods Appl. Mech. Eng., 200(47-48):3358–3380, 2011.
  42. Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int. J. Numer. Methods Eng., 95(10):811–846, 2013.
  43. Grégory Legrain. A NURBS enhanced extended finite element approach for unfitted CAD analysis. Comput. Mech., 52(4):913–929, 2013.
  44. An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Comput. Methods Appl. Mech. Eng., 284:1005–1053, 2015.
  45. Skeleton-stabilized immersogeometric analysis for incompressible viscous flow problems. Comput. Methods Appl. Mech. Eng., 344:421–450, 2019.
  46. Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. Int. J. Numer. Methods Eng., 103(6):445–468, 2015.
  47. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal., 47(2):1319–1365, 2009.
  48. L. Piegl and W. Tiller. The NURBS Book. Monographs in Visual Communication. Springer Berlin, Heidelberg, 1995.
  49. HDG-NEFEM with degree adaptivity for Stokes flows. J. Sci. Comput., 77(3):1953–1980, 2018.
  50. An unfitted hybridizable discontinuous Galerkin method for the Poisson interface problem and its error analysis. IMA J. Numer. Anal., 37(1):444–476, 2016.
  51. A dissimilar non-matching HDG discretization for Stokes flows. Comput. Methods Appl. Mech. Eng., 399:115292, 2022.
  52. eXtended Hybridizable Discontinuous Galerkin with Heaviside enrichment for heat bimaterial problems. J. Sci. Comput., 72(2):542–567, 2017.
  53. eXtended hybridizable discontinuous Galerkin for incompressible flow problems with unfitted meshes and interfaces. Int. J. Numer. Methods Eng., 117(7):756–777, 2019.
  54. Hybridized CutFEM for elliptic interface problems. SIAM J. Sci. Comput., 41(5):A3354–A3380, 2019.
  55. E. Burman and A. Ern. An unfitted hybrid high-order method for elliptic interface problems. SIAM J. Numer. Anal., 56(3):1525–1546, 2018.
  56. An unfitted hybrid high-order method with cell agglomeration for elliptic interface problems. SIAM J. Sci. Comput., 43(2):A859–A882, 2021.
  57. An unfitted hybrid high-order method for the Stokes interface problem. IMA J. Numer. Anal., 41(4):2362–2387, 2021.
  58. S. Piccardo and A. Ern. Surface tension effects between two immiscible Stokes fluids: a computational study using unfitted hybrid high-order methods and a level-set scheme. SMAI J. Comput. Math., 9:257–283, 2023.
  59. David F. Rogers. An introduction to NURBS: with historical perspective. Morgan Kaufmann Publishers Inc., San Francisco, CA, 2001.
  60. Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations. Int. J. Numer. Methods Fluids, 57(9):1071–1092, 2008.
  61. A. Quarteroni. Numerical Models for Differential Problems. Springer International Publishing, Cham, 2017.
  62. H. Jasak. Error analysis and estimation in the Finite Volume method with applications to fluid flows. PhD thesis, Imperial College, University of London, 1996.
  63. A face-centred finite volume method for second-order elliptic problems. Int. J. Numer. Methods Eng., 115(8):986–1014, 2018.
  64. Tutorial on Hybridizable Discontinuous Galerkin (HDG) formulation for incompressible flow problems. In L. De Lorenzis and A. Düster, editors, Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids, volume 599 of CISM International Centre for Mechanical Sciences, pages 163–201. Springer International Publishing, 2020.
  65. Tutorial on Hybridizable Discontinuous Galerkin (HDG) for second-order elliptic problems. In J. Schröder and P. Wriggers, editors, Advanced Finite Element Technologies, volume 566 of CISM International Centre for Mechanical Sciences, pages 105–129. Springer International Publishing, 2016.
  66. HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB. Arch. Comput. Methods Eng., 28(3):1941–1986, 2021.
  67. A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal., 29(2):235–256, 2009.
  68. A robust Nitsche’s formulation for interface problems. Comput. Methods Appl. Mech. Eng., 225:44–54, 2012.
  69. M. Giacomini. An equilibrated fluxes approach to the certified descent algorithm for shape optimization using conforming finite element and discontinuous Galerkin discretizations. J. Sci. Comput., 75(1):560–595, 2018.
  70. R. Sevilla and T. Duretz. A face-centred finite volume method for high-contrast Stokes interface problems. Int. J. Numer. Methods Eng., 124(17):3709–3732, 2023.
  71. J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. In Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, volume 36, pages 9–15. Springer, 1971.
  72. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5), 2002.
  73. D.N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19(4):742–760, 1982.
  74. R. Stenberg. On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math., 63(1-3):139–148, 1995.
  75. A. Johansson and M.G. Larson. A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary. Numer. Math., 123:607–628, 2013.
  76. Finite element methods for flow problems. John Wiley & Sons, Chichester, 2003.
  77. A superconvergent hybridisable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Eng., 116(2):91–116, 2018.
  78. A superconvergent HDG method for Stokes flow with strongly enforced symmetry of the stress tensor. J. Sci. Comput., 77(3):1679–1702, 2018.
  79. A weakly compressible hybridizable discontinuous Galerkin formulation for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng., 372:113392, 2020.
  80. Hybridisable discontinuous Galerkin formulation of compressible flows. Arch. Comput. Methods Eng., 28(2):753–784, 2021.
  81. A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng., 199(9-12):582–597, 2010.
  82. Analysis of HDG methods for Stokes flow. Math. Comp., 80(274):723–760, 2011.
  83. Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier–Stokes equations. Comput. Fluids, 98:196–208, 2014.
  84. M. Giacomini and R. Sevilla. Discontinuous Galerkin approximations in computational mechanics: hybridization, exact geometry and degree adaptivity. SN Appl. Sci., 1:1047, 2019.
  85. Corrections to Lee’s visibility polygon algorithm. BIT Numer. Math., 27(4):458–473, 1987.
  86. Marching cubes: A high resolution 3D surface construction algorithm. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, ACM SIGGRAPH Computer Graphics, pages 163–169, New York, NY, USA, 1987. Association for Computing Machinery.
  87. Robust h-adaptive meshing strategy considering exact arbitrary CAD geometries in a Cartesian grid framework. Comput. Struct., 193:87–109, 2017.
  88. Conditioning of a Hybrid High-Order Scheme on Meshes with Small Faces. J. Sci. Comput., 92(2), 2022.
  89. S. Rhebergen and G.N. Wells. Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations. J. Sci. Comput., 77(3):1936–1952, 2018.
  90. A multilevel approach for trace system in HDG discretizations. J. Comput. Phys., 407:109240, 2020.
  91. Finding the optimal design of a passive microfluidic mixer. Lab Chip, 19(21):3618–3627, 2019.
  92. Flow regimes and relative permeabilities during steady-state two-phase flow in porous media. J. Fluid Mech., 293(2):207–236, 1995.
  93. Upscaling immiscible two-phase dispersed flow in homogeneous porous media: A mechanical equilibrium approach. Chem. Eng. Sci., 126:116–131, 2015.
  94. Effects of pore-scale geometry and wettability on two-phase relative permeabilities within elementary cells. Water (Switzerland), 9(4), 2017.
  95. Space-time NURBS-enhanced finite elements for free-surface flows in 2D. Int. J. Numer. Methods Fluids, 81(7):426–450, 2016.
  96. Fluid–structure interaction with NURBS-based coupling. Comput. Methods Appl. Mech. Eng., 332:520–539, 2018.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com