Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An extension of May's Theorem to three alternatives: axiomatizing Minimax voting (2312.14256v3)

Published 21 Dec 2023 in econ.TH, cs.GT, and cs.MA

Abstract: May's Theorem [K. O. May, Econometrica 20 (1952) 680-684] characterizes majority voting on two alternatives as the unique preferential voting method satisfying several simple axioms. Here we show that by adding some desirable axioms to May's axioms, we can uniquely determine how to vote on three alternatives (setting aside tiebreaking). In particular, we add two axioms stating that the voting method should mitigate spoiler effects and avoid the so-called strong no show paradox. We prove a theorem stating that any preferential voting method satisfying our enlarged set of axioms, which includes some weak homogeneity and preservation axioms, must choose from among the Minimax winners in all three-alternative elections. When applied to more than three alternatives, our axioms also distinguish Minimax from other known voting methods that coincide with or refine Minimax for three alternatives.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. Another characterization of the majority rule. Economics Letters, 75(3):409–413, 2002. doi: 10.1016/S0165-1765(02)00014-9.
  2. Kenneth J. Arrow. Social Choice and Individual Values. John Wiley & Sons, Inc., New York, 2nd edition, 1963.
  3. Felix Brandt. Some remarks on Dodgson’s voting rule. Mathematical Logic Quarterly, 55(4):460–463, 2009. doi: 10.1002/malq.200810017.
  4. Susumu Cato. Pareto principles, positive responsiveness, and majority decisions. Theory and Decision, 71:503–518, 2011. doi: 10.1007/s11238-011-9261-8.
  5. Susumu Cato. Decisive coalitions and positive responsiveness. Metroeconomica, 69:1–323, 2018. doi: 10.1111/meca.12180.
  6. Voting with rubber bands, weights, and strings. Mathematical Social Sciences, 64(1):11–27, 2012. doi: 10.1016/j.mathsocsci.2011.08.003.
  7. Stephen Ching. A simple characterization of plurality rule. Journal of Economic Theory, 71:298–302, 1996. doi: 10.1006/jeth.1996.0119.
  8. M.J.A.N. de C., Marque de Condorcet. Essai sur l’application de l’analyse à la probabilitié des décisions rendues à la pluralité des voix. l’Imprimerie Royale, Paris, 1785.
  9. Clyde Hamilton Coombs. A Theory of Data. John Wiley and Sons, New York, 1964.
  10. An axiomatic characterization of Split Cycle. arXiv:2210.12503, 2023.
  11. Comparing partial rankings. SIAM Journal of Discrete Mathematics, 20(3):628–648, 2006. doi: 10.1137/05063088X.
  12. Weighted tournament solutions. In Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors, Handbook of Computational Social Choice, pages 86–102. Cambridge University Press, New York, 2016. doi: 10.1017/CBO9781107446984.005.
  13. On the axiomatic characterization of runoff voting rules. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI-14), pages 675–681. AAAI Press, 2014.
  14. If you like the alternative vote (a.k.a. the instant runoff), then you ought to know about the Coombs rule. Electoral Studies, 23(4):641–659, 2004. doi: 10.1016/j.electstud.2003.08.001.
  15. D. Henriet. The Copeland choice function: an axiomatic characterization. Social Choice and Welfare, 2:49–63, 1985. doi: 10.1007/BF00433767.
  16. Did Ralph Nader spoil a Gore presidency? A ballot-level study of Green and Reform Party voters in the 2000 presidential election. Quarterly Journal of Political Science, 2(3):205–226, 2007.
  17. Proportional Representation. Macmillan, New York, 1926.
  18. Axioms for defeat in democratic elections. Journal of Theoretical Politics, 33(4):475–524, 2021a. doi: 10.1177/09516298211043236.
  19. Measuring violations of positive involvement in voting. In J. Y. Halpern and A. Perea, editors, Theoretical Aspects of Rationality and Knowledge 2021 (TARK 2021), volume 335 of Electronic Proceedings in Theoretical Computer Science, pages 189–209, 2021b. doi: 10.4204/EPTCS.335.17.
  20. Split Cycle: a new Condorcet-consistent voting method independent of clones and immune to spoilers. Public Choice, 197:1–62, 2023a. doi: 10.1007/s11127-023-01042-3.
  21. Stable Voting. Constitutional Political Economy, 34:421–433, 2023b. doi: 10.1007/s10602-022-09383-9.
  22. John G. Kemeny. Mathematics without numbers. Daedalus, 88(4):577–591, 1959.
  23. Gerald H. Kramer. A dynamical model of political equilibrium. Journal of Economic Theory, 16(2):310–334, 1977. doi: 10.1016/0022-0531(77)90011-4.
  24. Bonifacio Llamazares. The forgotten decision rules: Majority rules based on difference of votes. Mathematical Social Sciences, 51:311–326, 2006. doi: 10.1016/j.mathsocsci.2005.12.001.
  25. Christopher S. P. Magee. Third-party candidates and the 2000 presidential election. Social Science Quarterly, 84(3):29–35, 2003. doi: 10.1111/1540-6237.8403006.
  26. Kenneth O. May. A set of independent necessary and sufficient conditions for simple majority decision. Econometrica, 20(4):680–684, 1952.
  27. Vincent Merlin. The axiomatic characterizations of majority voting and scoring rules. Mathématiques et sciences humaines, 163, 2003. doi: 10.4000/msh.2919.
  28. A further characterization of Borda ranking method. Public Choice, 36(1):53–158, 1981. doi: 10.1007/BF00163778.
  29. Joaquín Pérez. The strong no show paradoxes are a common flaw in Condorcet voting correspondences. Social Choice and Welfare, 18(3):601–616, 2001. doi: 10.1007/s003550000079.
  30. Jeffrey T. Richelson. A characterization result for plurality rule. Journal of Economic Theory, 19:548–550, 1978. doi: 10.1016/0022-0531(78)90108-4.
  31. Donald G. Saari. Basic Geometry of Voting. Springer, Berlin, 1995. doi: 10.1007/978-3-642-57748-2.
  32. Markus Schulze. A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method. Social Choice and Welfare, 36:267–303, 2011. doi: 10.1007/s00355-010-0475-4.
  33. Markus Schulze. The Schulze method of voting. arXiv:1804.02973, 2023.
  34. Yohei Sekiguchi. A characterization of the plurality rule. Economics Letters, 116(3):330–332, 2012. doi: 10.1016/j.econlet.2012.03.025.
  35. Paul B. Simpson. On defining areas of voter choice: Professor Tullock on stable voting. The Quarterly Journal of Economics, 83(3):478–490, 1969. doi: 10.2307/1880533.
  36. John H. Smith. Aggregation of preferences with variable electorate. Econometrica, 41(6):1027–1041, 1973. doi: 10.2307/1914033.
  37. T. N. Tideman. A majority-rule characterization with multiple extensions. Social Choice and Welfare, 3:17–30, 1986. doi: 10.1007/BF00433521.
  38. T. Nicolaus Tideman. Independence of clones as a criterion for voting rules. Social Choice and Welfare, 4:185–206, 1987. doi: 10.1007/bf00433944.
  39. Gerhard J. Woeginger. A new characterization of the majority rule. Economics Letters, 81(89-94):89–94, 2002. doi: 10.1016/S0165-1765(03)00145-9.
  40. H. P. Young. An axiomatization of Borda’s rule. Journal of Economic Theory, 9:1027–1041, 1974. doi: 10.1016/0022-0531(74)90073-8.
  41. H. P. Young. Social choice scoring functions. SIAM Journal on Applied Mathematics, 28(4):313–355, 1975. doi: 10.1137/0128067.
  42. H. P. Young. Extending Condorcet’s rule. Journal of Economic Theory, 16:335–353, 1977. doi: 10.1016/0022-0531(77)90012-6.
  43. H. P. Young. Condorcet’s theory of voting. American Political Science Review, 82(4):1231–1244, 1988. doi: 10.2307/1961757.
  44. William S. Zwicker. Introduction to the theory of voting. In Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors, Handbook of Computational Social Choice, pages 23–56. Cambridge University Press, New York, 2016. doi: 10.1017/cbo9781107446984.003.
Citations (3)

Summary

We haven't generated a summary for this paper yet.