Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning Based Placement for Integrated Access Backhauling in UAV-Assisted Wireless Networks (2312.14247v1)

Published 21 Dec 2023 in cs.NI, cs.LG, cs.SY, and eess.SY

Abstract: The advent of fifth generation (5G) networks has opened new avenues for enhancing connectivity, particularly in challenging environments like remote areas or disaster-struck regions. Unmanned aerial vehicles (UAVs) have been identified as a versatile tool in this context, particularly for improving network performance through the Integrated access and backhaul (IAB) feature of 5G. However, existing approaches to UAV-assisted network enhancement face limitations in dynamically adapting to varying user locations and network demands. This paper introduces a novel approach leveraging deep reinforcement learning (DRL) to optimize UAV placement in real-time, dynamically adjusting to changing network conditions and user requirements. Our method focuses on the intricate balance between fronthaul and backhaul links, a critical aspect often overlooked in current solutions. The unique contribution of this work lies in its ability to autonomously position UAVs in a way that not only ensures robust connectivity to ground users but also maintains seamless integration with central network infrastructure. Through various simulated scenarios, we demonstrate how our approach effectively addresses these challenges, enhancing coverage and network performance in critical areas. This research fills a significant gap in UAV-assisted 5G networks, providing a scalable and adaptive solution for future mobile networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. Y. Wang and J. Farooq, “Optimal 3D placement for integrated access backhauling in UAV-assisted wireless networks using reinforcement learning,” in IEEE MASS International Workshop on Unmanned Autonomous Vehicles and IoT (UAV-IoT 2023), 2023.
  2. Y. Zhang, H. Shan, M. Song, H. H. Yang, Q. Zhang, and X. He, “Throughput analysis of UAV-assisted IAB cellular networks with heterogeneous traffic,” in IEEE Wireless Communications and Networking Conference (WCNC 2022), 2022, pp. 902–907.
  3. G. Colajanni, P. Daniele, L. Galluccio, C. Grasso, and G. Schembra, “Service chain placement optimization in 5G FANET-based network edge,” IEEE Communications Magazine, vol. 60, no. 11, pp. 60–65, 2022.
  4. C. Sriharsha and C. S. R. Murthy, “A novel UAV-aided user offloading in 5G and beyond,” in IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2022), 2022, pp. 1012–1018.
  5. S. Li, Y. Jia, F. Yang, Q. Qin, H. Gao, and Y. Zhou, “Collaborative decision-making method for multi-UAV based on multiagent reinforcement learning,” IEEE Access, vol. 10, pp. 91 385–91 396, 2022.
  6. M. Sookhak and A. H. Mohajerzadeh, “Joint position and trajectory optimization of flying base station in 5G cellular networks, based on users’ current and predicted location,” arXiv preprint arXiv:2202.03832, 2022.
  7. J. Luo, J. Song, F.-C. Zheng, L. Gao, and T. Wang, “User-centric UAV deployment and content placement in cache-enabled multi-UAV networks,” IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 5656–5660, 2022.
  8. M. T. Dabiri and M. Hasna, “3D uplink channel modeling of UAV-based mmwave fronthaul links for future small cell networks,” IEEE Transactions on Vehicular Technology, vol. 72, no. 2, pp. 1400–1413, 2022.
  9. K. Messaoudi, O. S. Oubbati, A. Rachedi, A. Lakas, T. Bendouma, and N. Chaib, “A survey of UAV-based data collection: Challenges, solutions and future perspectives,” Journal of Network and Computer Applications, p. 103670, 2023.
  10. H. Huang and A. V. Savkin, “Deployment of heterogeneous UAV base stations for optimal quality of coverage,” IEEE Internet of Things Journal, vol. 9, no. 17, pp. 16 429–16 437, 2022.
  11. P. Karmakar, V. K. Shah, S. Roy, K. Hazra, S. Saha, and S. Nandi, “Reliable backhauling in aerial communication networks against UAV failures: A deep reinforcement learning approach,” IEEE Transactions on Network and Service Management, vol. 19, no. 3, pp. 2798–2811, 2022.
  12. S. K. Khan, U. Naseem, A. Sattar, N. Waheed, A. Mir, A. Qazi, and M. Ismail, “UAV-aided 5G network in suburban, urban, dense urban, and high-rise urban environments,” in 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA).   IEEE, 2020, pp. 1–4.
  13. D. Saraswat, A. Verma, P. Bhattacharya, S. Tanwar, G. Sharma, P. N. Bokoro, and R. Sharma, “Blockchain-based federated learning in UAVs beyond 5G networks: A solution taxonomy and future directions,” IEEE Access, vol. 10, pp. 33 154–33 182, 2022.
  14. A. A. L. Queiroz, M. K. S. Barbosa, and K. L. Dias, “Aero5GBS—Deep learning-empowered ground users handover in aerial 5G and beyond systems,” IEEE Access, vol. 11, pp. 120 449–120 462, 2023.
  15. E. T. Michailidis, K. Maliatsos, D. N. Skoutas, D. Vouyioukas, and C. Skianis, “Secure UAV-aided mobile edge computing for IoT: A review,” IEEE Access, vol. 10, pp. 86 353–86 383, 2022.
  16. J. Almutairi, M. Aldossary, H. A. Alharbi, B. A. Yosuf, and J. M. H. Elmirghani, “Delay-optimal task offloading for UAV-enabled edge-cloud computing systems,” IEEE Access, vol. 10, pp. 51 575–51 586, 2022.
  17. H. Zhou, Z. Wang, G. Min, and H. Zhang, “UAV-aided computation offloading in mobile-edge computing networks: A stackelberg game approach,” IEEE Internet of Things Journal, vol. 10, no. 8, pp. 6622–6633, 2022.
  18. J. Guo, H. Gao, Z. Liu, F. Huang, J. Zhang, X. Li, and J. Ma, “ICRA: An intelligent clustering routing approach for UAV ad hoc networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 2, pp. 2447–2460, 2023.
  19. G. Bansal, V. Chamola, B. Sikdar et al., “SHOTS: scalable secure authentication-attestation protocol using optimal trajectory in UAV swarms,” IEEE Transactions on Vehicular Technology, vol. 71, no. 6, pp. 5827–5836, 2022.
  20. O. T. Abdulhae, J. S. Mandeep, and M. Islam, “Cluster-based routing protocols for flying ad hoc networks (FANETs),” IEEE Access, vol. 10, pp. 32 981–33 004, 2022.
  21. W. J. Yun, S. Park, J. Kim, M. Shin, S. Jung, D. A. Mohaisen, and J.-H. Kim, “Cooperative multiagent deep reinforcement learning for reliable surveillance via autonomous multi-UAV control,” IEEE Transactions on Industrial Informatics, vol. 18, no. 10, pp. 7086–7096, 2022.
  22. Y. Wang and J. Farooq, “Zero touch coordinated UAV network formation for 360∘superscript360360^{\circ}360 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT views of a moving ground target in remote VR applications,” in IEEE Military Communications Conference (MILCOM 2022), 2022, pp. 950–955.
  23. H.-C. Tsai, Y.-W. P. Hong, and J.-P. Sheu, “Completion time minimization for UAV-enabled surveillance over multiple restricted regions,” IEEE Transactions on Mobile Computing, vol. 22, no. 12, pp. 6907–6920, 2023.
  24. Z. Na, C. Ji, B. Lin, and N. Zhang, “Joint optimization of trajectory and resource allocation in secure UAV relaying communications for Internet of Things,” IEEE Internet of Things Journal, vol. 9, no. 17, pp. 16 284–16 296, 2022.
  25. Z. Wu and Q. Wang, “Trajectory optimization and power allocation for cell-free satellite-UAV Internet of things,” IEEE Access, vol. 11, pp. 203–213, 2022.
  26. X. Wang, M. C. Gursoy, T. Erpek, and Y. E. Sagduyu, “Learning-based UAV path planning for data collection with integrated collision avoidance,” IEEE Internet of Things Journal, vol. 9, no. 17, pp. 16 663–16 676, 2022.
  27. S. Zargari, A. Hakimi, C. Tellambura, and S. Herath, “User scheduling and trajectory optimization for energy-efficient IRS-UAV networks with SWIPT,” IEEE Transactions on Vehicular Technology, 2022.
  28. J. Cui, Z. Ding, Y. Deng, A. Nallanathan, and L. Hanzo, “Adaptive UAV-trajectory optimization under quality of service constraints: A model-free solution,” IEEE Access, vol. 8, pp. 112 253–112 265, 2020.
  29. H. Guo, X. Zhou, Y. Wang, and J. Liu, “Achieve load balancing in multi-uav edge computing iot networks: A dynamic entry and exit mechanism,” IEEE Internet of Things Journal, vol. 9, no. 19, pp. 18 725–18 736, 2022.
  30. O. S. Oubbati, H. Badis, A. Rachedi, A. Lakas, and P. Lorenz, “Multi-UAV assisted network coverage optimization for rescue operations using reinforcement learning,” in 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC), 2023, pp. 1003–1008.
  31. M. M. Islam, M. M. Saad, M. T. Raza Khan, and S. H. A. Shah, “Proactive UAVs placement in vanets,” in IEEE International Conference on Communications (ICC 2022), 2022, pp. 1–7.
  32. Z. Rahimi, R. Ghanbari, A. H. Mohajerzadeh, H. Ahmadi, and M. Sookhak, “3D UAV BS positioning and backhaul management in cellular network via stochastic optimization,” in IEEE Global Communications Conference (Globecom 2022), 2022, pp. 2169–2175.
  33. H. Sun, B. Zhang, X. Zhang, Y. Yu, K. Sha, and W. Shi, “FlexEdge: Dynamic task scheduling for a UAV-based on-demand mobile edge server,” IEEE Internet of Things Journal, vol. 9, no. 17, pp. 15 983–16 005, 2022.
  34. S. A. Al-Ahmed, M. Z. Shakir, and S. A. R. Zaidi, “Optimal 3D UAV base station placement by considering autonomous coverage hole detection, wireless backhaul and user demand,” Journal of Communications and Networks, vol. 22, no. 6, pp. 467–475, 2020.
  35. J. Sabzehali, V. K. Shah, Q. Fan, B. Choudhury, L. Liu, and J. H. Reed, “Optimizing number, placement, and backhaul connectivity of multi-UAV networks,” IEEE Internet of Things Journal, vol. 9, no. 21, pp. 21 548–21 560, 2022.
  36. K. Wu, K.-W. Chin, and S. Soh, “UAVs deployment algorithms for maximizing backhaul flow,” IEEE Systems Journal, 2023.
  37. M. J. Farooq and Q. Zhu, “A multi-layer feedback system approach to resilient connectivity of remotely deployed mobile Internet of Things,” IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 2, pp. 422–432, 2018.
  38. B. Hu, L. Wang, S. Chen, J. Cui, and L. Chen, “An uplink throughput optimization scheme for UAV-enabled urban emergency communications,” IEEE Internet of Things Journal, vol. 9, no. 6, pp. 4291–4302, 2021.
  39. M. Nafees, J. Thompson, and M. Safari, “Multi-tier variable height UAV networks: User coverage and throughput optimization,” IEEE Access, vol. 9, pp. 119 684–119 699, 2021.
  40. O. S. Oubbati, M. Atiquzzaman, A. Baz, H. Alhakami, and J. Ben-Othman, “Dispatch of UAVs for urban vehicular networks: A deep reinforcement learning approach,” IEEE Transactions on Vehicular Technology, vol. 70, no. 12, pp. 13 174–13 189, 2021.
  41. Y. Wang and J. Farooq, “Proactive and resilient UAV orchestration for QoS driven connectivity and coverage of ground users,” in IEEE Conference on Communications and Network Security - Cyber Resilience Workshop (CNS-CRW 2022), 2022, pp. 371–376.
  42. ——, “Resilient UAV formation for coverage and connectivity of spatially dispersed users,” in IEEE International Conference on Communications (ICC 2022), 2022, pp. 225–230.
  43. J. Li, K. K. Nagalapur, E. Stare, S. Dwivedi, S. A. Ashraf, P.-E. Eriksson, U. Engström, W.-H. Lee, and T. Lohmar, “5G new radio for public safety mission critical communications,” IEEE Communications Standards Magazine, vol. 6, no. 4, pp. 48–55, 2022.
  44. N. Nouri, J. Abouei, A. R. Sepasian, M. Jaseemuddin, A. Anpalagan, and K. N. Plataniotis, “Three-dimensional multi-UAV placement and resource allocation for energy-efficient IoT communication,” IEEE Internet of Things Journal, vol. 9, no. 3, pp. 2134–2152, 2021.
  45. A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude for maximum coverage,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569–572, 2014.
  46. A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-ground path loss for low altitude platforms in urban environments,” in IEEE Global Communications Conference (Globecom 2014), 2014, pp. 2898–2904.
  47. C. Yan, X. Xiang, and C. Wang, “Towards real-time path planning through deep reinforcement learning for a uav in dynamic environments,” Journal of Intelligent & Robotic Systems, vol. 98, pp. 297–309, 2020.
  48. Y. Zeng, X. Xu, S. Jin, and R. Zhang, “Simultaneous navigation and radio mapping for cellular-connected uav with deep reinforcement learning,” IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp. 4205–4220, 2021.
  49. A. Al-Hourani and I. Guvenc, “On modeling satellite-to-ground path-loss in urban environments,” IEEE Communications Letters, vol. 25, no. 3, pp. 696–700, 2020.
  50. S. Lim, H. Yu, and H. Lee, “Optimal tethered-uav deployment in a2g communication networks: Multi-agent q-learning approach,” IEEE Internet of Things Journal, vol. 9, no. 19, pp. 18 539–18 549, 2022.
  51. S. Ouahouah, M. Bagaa, J. Prados-Garzon, and T. Taleb, “Deep-reinforcement-learning-based collision avoidance in uav environment,” IEEE Internet of Things Journal, vol. 9, no. 6, pp. 4015–4030, 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.